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CONFINEMENT IN EINSTEIN'S UNIFIED FIELD THEORY

SALVATORE ANTOCI, DIERCK-EKKEHARD LIEBSCHER, AND LUIGI MIHICH

Abstrat. After realling the mathematial struture of Einstein's Her-

mitian extension of the gravitational theory of 1915, the problem, whe-

ther its �eld equations should admit of phenomenologial soures at

their right-hand sides, and how this addition should be done, is ex-

pounded by relying on a thread of essential insights and ahievements by

Shr�odinger, Kur�suno�glu, Lihnerowiz, H�ely and Borhsenius. When

soures are appended to all the �eld equations, from the latter and from

the ontrated Bianhi identities a sort of gravoeletrodynamis appears,

that totally departs from the so alled Einstein-Maxwell theory, sine its

onstitutive equation, that rules the link between indutions and �elds,

is a very ompliated di�erential relation that allows for a muh wider,

still pratially unexplored range of possible ourrenes.

In this sort of theory one an allow for both an eletri and a magneti

four-urrent, whih are not a physially wrong replia of eah other,

like it would our if both these urrents were allowed in Maxwell's

vauum. Partiular stati exat solutions show that, due to the peuliar

onstitutive equation, while eletri harges with a pole struture behave

aording to Coulomb's law, magneti harges with a pole struture

interat with fores not depending on their mutual distane. The latter

behaviour was already disovered by Treder in 1957 with an approximate

alulation, while looking for ordinary eletromagnetism in the theory.

He also showed that in the Hermitian theory magneti harges of unlike

sign mutually attrat, hene they are permanently on�ned entities.

The exat solutions on�rm this �nding, already interpreted in 1980 by

Treder in a hromodynami sense.

1. Introdution

With their theory of the nonsymmetri �eld, either in the metri-aÆne

[1, 2, 3, 4℄ or in the purely aÆne version [5, 6, 7, 8℄, while providing a

last demonstration of their mathematial insight, Einstein and Shr�odinger

left as heritage to the future generations the heavy task of trying to at-

tribute a physial interpretation to the very similar �eld equations that, by

proeeding from di�erent startpoints, both of them eventually arrived at.

We shall onsider here for de�niteness the theory proposed by Einstein, in

its omplex, Hermitian version [3℄. In this theory, de�ned on a real, four-

dimensional manifold, one avails, as independent fundamental quantities, of

the Hermitian tensor g

ik

= g

(ik)

+g

[ik℄

and of the Hermitian aÆne onnetion

�

i

kl

= �

i

(kl)

+ �

i

[kl℄

. From g

ik

one builds the Hermitian ontravariant tensor

1
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g

ik

suh that

(1.1) g

il

g

kl

= g

li

g

lk

= Æ

i

k

;

and, sine g � det (g

ik

) is a real quantity, the Hermitian tensor density

(1.2) g

ik

=

p

�gg

ik

:

In Einstein's Hermitian theory, under quite general onditions [9℄, the Her-

mitian aÆne onnetion �

i

kl

is uniquely de�ned by the tensor g

ik

through

the transposition invariant equation

(1.3) g

ik;l

� g

nk

�

n

il

� g

in

�

n

lk

= 0:

Let the further �eld equation

(1.4) g

[is℄

;s

= 0

be satis�ed. From (1.3) one gets [10℄ that (1.4) is equivalent to the injuntion

(1.5) �

i

� �

l

[il℄

= 0

on the skew part of the aÆne onnetion. From (1.3) alone it stems further:

(1.6) �

a

(ia);k

= �

a

(ka);i

:

The ful�llment of both (1.3) and (1.4) is ruial for the properties of the

two generally nonvanishing ontrations R

i

kli

and R

i

ilm

of the Riemann

urvature tensor

(1.7) R

i

klm

(�) = �

i

kl;m

� �

i

km;l

� �

i

al

�

a

km

+ �

i

am

�

a

kl

:

The seond ontration reads in general:

(1.8) R

i

ilm

= �

i

il;m

� �

i

im;l

:

When both (1.3) and (1.4) are satis�ed, this seond ontration just vanishes

due to (1.5) and (1.6); hene, like it ours with the symmetri theory of

1915, also the problem of hoosing whih ombination of the ontrations

one should introdue in the �eld equations simply disappears. Under the

same irumstanes, the �rst ontration

(1.9) R

kl

(�) = �

i

kl;i

� �

i

ki;l

� �

a

ki

�

i

al

+ �

a

kl

�

i

ai

;

i.e. the Rii tensor, happens to be Hermitian. Einstein proposed that its

symmetri and skew parts should ful�ll the �eld equations

(1.10) R

(ik)

(�) = 0

and

(1.11) R

[ik℄;l

(�) +R

[kl℄;i

(�) +R

[li℄;k

(�) = 0

respetively. The �eld equations (1.3), (1.4) and (1.10), (1.11) of what

Einstein alled the Hermitian generalization of the theory of gravitation

an be dedued from a variational priniple, e.g. in the manner shown by



3

Einstein in [3℄, or in the more transparent way, that avails of the \starred

aÆnity", envisaged [6℄ by Shr�odinger.

We have indulged, with these introdutory remarks, in expounding the

mathematial struture of Einstein's Hermitian theory, sine the knowledge

of the latter is by no means widespread, while it seems essential for properly

understanding what sort of hopes sustained both Einstein and Shr�odinger

in their deade-long e�ort, and what means they believed to be the most

appropriate for trying to ful�ll suh hopes.

In the many tehnial papers written in the deade 1945-1955 on the

subjet of the \generalized theory of gravitation", Einstein spent very few

words on the possible physial ontent of the theory. In his \Autobiogra-

phishes" [11℄ he was very lear about the reasons for believing that the

future progress of physial theory ould not be based on quantum theory,

due to the statistial harater of the latter, and to its allowane for the

superposition priniple; to him, any real progress ould only be ahieved by

starting from the general theory of relativity, sine in Einstein's opinion,\its

equations are more likely to assert anything preise than all the other equa-

tions of physis". From the disovery of general relativity he had also learned

that no olletion of empirial fats, however extensive, ould have been of

help in building equations of suh intriay: equations of suh ompliation

an only be retrieved when one has found a logially simple mathematial

ondition that determines the equations in a omplete or nearly omplete

way. Hermitian symmetry or, more generally, invariane under transposi-

tion, that both represent a natural mathematial extension of the symmetry

properties of the general relativity of 1915, ould be suÆiently strong formal

onditions, upon whih one might attempt a generalization of the previous

theory, based on real symmetri quantities.

At variane with the buoyant optimism permeating his �rst attempt on

the subjet [1℄, in his later work Einstein, while sometimes asserting that,

sine (1.4) had to hold everywhere, g

[[ik℄;l℄

might have to assume the rôle of

eletri four-urrent [3, 12℄, beame autious in foretelling what the possible

physial ontent of his new theory might result to be. In the autobiograph-

ial notes he limited himself to remark that, in his opinion, equations (1.3),

(1.4), (1.10), (1.11) onstituted the most natural generalization of the equa-

tions of gravitation, just adding, in a footnote, that in his opinion the theory

had a fair likelihood of proving orret, provided that the way to a satis-

fatory representation of the physial reality on the basis of the ontinuum

will turn out to be feasible in general. He also believed that, sine these

equations onstituted the natural ompletion of the equations of 1915, no

soure terms should be appended at their right-hand sides. His \Autobio-

graphishes" therefore ends with a question mark, left like a legay to the

posterity: what happens with the solutions of these equations that are free

from singularities in the whole spae?

On the possible physial ontent of the theory, Shr�odinger was more ex-

pliit already in his �rst paper [5℄, where he learly shows to have pereived
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the omplete novelty of a fundamental feature of the theory, that had to

beome a ruial issue in the years to ome, and eventually led to the aban-

donment of the e�orts aimed at the understanding of the theory, sine it

onstitutes too large a departure from the way we are used to think about

the eletromagneti interation.

2. Interpreting the theory along a path made possible by

Shr

�

odinger, Kursunoglu, Lihnerowiz, H

�

ely and

Borhsenius

In [5℄ Shr�odinger deals with his own purely aÆne theory, whose �eld

equations, if onsidered from a trivially pragmati standpoint, di�er from

the ones reported in Setion 1 only due to the presene of the \osmologial

terms" �g

(ik)

and �g

[[ik℄;l℄

at the right-hand sides of equations (1.10) and

(1.11) respetively. His remarks about the possible eletromagneti mean-

ing of his theory an be extended to the ase when � = 0, and mean that

equations (1.4) and (1.11) should be interpreted like a sort of (modi�ed)

Maxwell equations, with g

[ik℄

and R

[ik℄

in the rôles of \ontravariant den-

sity" and \ovariant �eld tensor" respetively. Needless to say, suh an

interpretation entails a total departure from the behaviour that one might

expet from the aquaintane with Maxwell's equations in vauo, where the

two quantities previously mentioned within quotation marks are mutually

related by a simple onstitutive equation, that only entails the metri in the

usual tasks of raising indies and forming densities from tensors. g

[ik℄

and

R

[ik℄

an play in (1.4) and (1.11) the rôles envisaged by Shr�odinger only

if the onstitutive equation of this \eletromagnetism" is of a kind never

heard of before, namely, a highly involved di�erential relation, whose on-

tent is by no means surveyable in its expliit form, sine its determination

requires �rst solving (1.3) for the aÆne onnetion, and then substituting

the resulting expressions �

i

kl

= �

i

kl

(g

pq

; g

pq;r

) in R

[ik℄

(�). It is well known [9℄

that already the �rst step does not yield in general a surveyable outome,

hene no hint an be drawn a priori about the relation between indutions

and �elds ditated by the Hermitian theory.

However, despite the total ignorane about its physial meaning, there is

one thing that an be subjeted to a lose srutiny in this sort of eletro-

magnetism. In keeping with Shr�odinger's and Einstein's onvition that

the theory did onstitute the ompletion of the theory of 1915, no soures

are to be allowed at the right-hand sides of all its �eld equations. This

holds in partiular for (1.4) and (1.11): as Shr�odinger [5℄ notes with some

regret, these equations of unmistakable eletromagneti form are \used up";

their left-hand sides annot be availed of for de�ning, like it ould have

been possible in priniple, two onserved four-urrents assoiated with the

skew �elds. Therefore, and again at variane with what ours in Maxwell's

eletromagnetism, we have to look elsewhere for the de�nition of, say, the

eletri four-urrent. Suh a further departure from the known patterns
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ould be welome and sought for, beause, as omplained by Einstein, \Das

Elektron ist ein Fremder in die Elektrodynamik". An eletri four-urrent

whose ontinuous distribution were ditated by the �eld equations them-

selves would represent the solution of many problems that plague theoretial

physis. This is why Einstein suggested that g

[[ik℄;l℄

might have to assume

the rôle of eletri four-urrent [3, 12℄; in [5℄ Shr�odinger added three more

andidates to suh a high task. But (1.4) and (1.11) are just the eletromag-

neti equations that one would write in the absene of harges and urrents

for some ontinuum endowed with a very strange onstitutive equation, and

the Hermitian theory of relativity is a natural generalization of an eminently

suessful predeessor, whose suess was however only possible through the

addition, as soure, of the phenomenologial energy tensor. Therefore the

shadow of doubt remained, that the new theory might need phenomenolog-

ial soures too.

Suh a doubt was strengthened by the study of the ontrated Bianhi

identities. One may �nd the derivation of these identities e.g. in [7℄, where

Shr�odinger, in keeping with his onvition that the theory allowed for a

merging of gravitational and nongravitational �elds in a total entity, did

not split their expression by separating the terms where only symmetri

quantities appear from the terms where only skew quantities our, like e.g.

Kur�suno�glu did a few years later [13, 14℄. When the �eld equations (1.3),

(1.4) hold, the ontrated Bianhi identities found by Shr�odinger an be

written as

(2.1)

h

p

�g

�

g

ik

R

il

+ g

ki

R

li

�i

;k

=

p

�gg

ik

R

ik;l

:

Through the above mentioned splitting, the same identities ome to read

�

2

p

�gg

(ik)

R

(il)

�

;k

�

p

�gg

(ik)

R

(ik);l

(2.2)

=

p

�gg

[ik℄

�

R

[ik℄;l

+R

[kl℄;i

+R

[li℄;k

�

:

But in [14℄ Kur�suno�glu provided an even more allusive writing. He notied

that, if one introdues a symmetri tensor s

ik

suh that

(2.3)

p

�ss

ik

=

p

�gg

(ik)

;

where s is the determinant of the tensor s

ik

, and s

ik

s

il

= Æ

k

l

, the left-hand

side of (2.2) an be rewritten as follows:

�

2

p

�gg

(ik)

R

(il)

�

;k

�

p

�gg

(ik)

R

(ik);l

(2.4)

=

�

2

p

�ss

ik

R

(il)

�

;k

�

�

p

�ss

ik

R

(ik)

�

;l

:

Remarkably enough, the semiolon stands for the ovariant di�erentiation

with respet to the Christo�el symbols built with s

ik

. Hene the ontrated

Bianhi identities of Einstein's nonRiemannian extension of the vauum gen-

eral relativity of 1915 admit a sort of Riemannian rewriting that avails of
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the tensor s

ik

:

�

s

ik

R

(il)

�

1

2

Æ

k

l

s

pq

R

(pq)

�

;k

(2.5)

=

1

2

r

g

s

g

[ik℄

�

R

[ik℄;l

+R

[kl℄;i

+R

[li℄;k

�

;

provided, of ourse, that equations (1.3) and (1.4) are satis�ed. The same

form of the weak identities was arrived at later [15℄ by H�ely, who was even

more prepared to appreiate the suggestions oming from Kur�suno�glu's way

of expression, thanks to a preious result [16, 17℄ found in the meantime:

through his study of the Cauhy problem in Einstein's new theory, Lih-

nerowiz had onluded that the metri l

ik

appearing in the eikonal equation

(2.6) l

ik

�

i

f�

k

f = 0

for the wave surfaes of the theory had to be

(2.7) l

ik

= g

(ik)

;

or, one must add, any metri onformally related to g

(ik)

. Sine s

ik

, de-

�ned by (2.3), just belonged to this lass of metris, H�ely had one more

reason for ritially investigating how the expression (2.5) might assume a

physial meaning, like it ours in the theory of 1915, where the ontrated

Bianhi identities just say that the ovariant divergene of the energy tensor

is vanishing.

When onfronted with the weak identity (2.5), the sort of regret felt by

Shr�odinger on notiing that the left-hand sides of (1.4) and (1.11) were

\used up" for expressing the vanishing of two four-urrents annot help be-

oming a serious onern. One has to withstand one further disappointment:

by adhering to the tenet endorsed both by Einstein and by Shr�odinger, a-

ording to whih no soure terms should be appended at the right-hand sides

of their equations, both sides of (2.5) simply vanish. Are we not missing in

this way an oasion o�ered by the theory? The very �nding of (2.5) led

Kur�suno�glu to modify [14℄ Einstein's �eld equations in order to provide the

weak identities with physial meaning in a �eld theoretial way. In a less

daring mood, H�ely appended [18℄ phenomenologial soures at the right-

hand sides of both (1.10) and (1.11), with the tentative physial meaning of

energy tensor for matter and of eletri urrent respetively. In suh a way,

(2.5) omes to assert that the nonvanishing of the ovariant divergene of

the energy tensor density of harged matter is due to the Lorentz oupling

of its eletri four-urrent with the eletromagneti �eld density g

[ik℄

.

In the same mood, one may well ask what hinders appending phenomeno-

logial soures to all the �eld equations. The question is even more justi�ed,

sine a lass of exat solutions to the equations of the Hermitian theory has

been found [19℄, that intrinsially depend on three oordinates. Solutions
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belonging to this lass appear endowed with physial meaning when soures

are appended at the right-hand sides of both (1.11) and (1.4).

There is indeed one hindrane, beause, as shown in Setion 1, the satis-

fation of (1.4) is just one of the neessary onditions for getting a Hermitian

Rii tensor. The remedy was found [20℄ by Borhsenius; one needs substi-

tuting the symmetrized Rii tensor

(2.8) R

kl

(�) = �

i

kl;i

�

1

2

�

�

i

ki;l

+�

i

li;k

�

� �

a

ki

�

i

al

+ �

a

kl

�

i

ai

;

for the plain Rii tensor (1.9). The substitution does not a�et the original

�eld equations of Einstein and Shr�odinger in vauo, sine there the modi�ed

Rii tensor of Borhsenius is equal to the true Rii tensor, but is e�etive

in obtaining a set of equations with soures that is always Hermitian. When

s

ik

is adopted as metri, in the footsteps of H�ely, this set, whose derivation

is reported e.g. in [21℄, reads:

(2.9) g

qr

;p

+ g

sr

�

q

sp

+ g

qs

�

r

ps

� g

qr

�

t

(pt)

=

4�

3

(j

q

Æ

r

p

� j

r

Æ

q

p

);

(2.10) g

[is℄

;s

= 4�j

i

;

(2.11)

�

R

(ik)

(�) = 8�(T

ik

�

1

2

s

ik

s

pq

T

pq

);

(2.12)

�

R

[[ik℄;l℄

= 8�K

ikl

:

In this way the two onserved four-urrents j

i

and K

ikl

, and the symmet-

ri energy tensor T

ik

are appended to the original equations in a manner

that does not spoil their Hermitian harater, and uniquely de�nes the phe-

nomenologial soures in terms of their geometri ounterparts. The relevant

ontrated Bianhi identities are [21℄ in this ase

� 2(g

(is)

�

R

(ik)

(�))

;s

+ g

(pq)

�

R

(pq);k

(�)(2.13)

= 2g

[is℄

;s

�

R

[ik℄

(�) + g

[is℄

�

R

[[ik℄;s℄

(�):

By substituting here the material soures de�ned above, and by de�ning the

ontravariant energy tensor density as

(2.14) T

ik

=

p

�ss

ip

s

kq

T

pq

;

one eventually extends H�ely's result [18℄ to the form

(2.15) T

ls

;s

=

1

2

s

lk

�

j

i

�

R

[ki℄

(�) +K

iks

g

[si℄

�

;

where the semiolon again indiates the ovariant derivative done with re-

spet to the Christo�el onnetion built with s

ik

. By ompleting H�ely's

proposal, this equation asserts that the ovariant divergene of T

ik

does not

vanish in general beause of the Lorentz oupling of the onserved urrent
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K

iks

with g

[si℄

, and also beause of the Lorentz oupling of the onserved

urrent density j

i

with the �eld

�

R

[ki℄

. But, sine the onstitutive equation

of this sort of eletromagnetism represents a total departure from the one

prevailing in the vauum of Maxwell's eletromagnetism, we shall not fear

that the duality present in the latter shall lead to a dupliate representation

of the same physial behaviour, with eletri and magneti four-urrents

both produing the same phenomena under a duality transformation. In

Maxwell's eletromagnetism this ourrene is avoided by imposing, in keep-

ing with experiene, that magneti four-urrents do not exist. In Einstein's

Hermitian theory this injuntion is neither required, nor helpful. The ex-

at solutions show in fat that the two four-urrents give rise to ompletely

di�erent interations, both seemingly needed for the desription of nature.

3. The eletrostatis of Einstein's Hermitian theory

The simple form of equation (2.15) should deeive nobody: it is evident

that the \partile in �eld" imagery, already misleading in Maxwell's eletro-

dynamis, is totally out of plae both in the general relativity of 1915 and

in its Hermitian extension. From suh nonlinear theories, both in exat and

in approximate solutions, as well exhibited [22℄ in the work of Einstein and

Infeld, one must expet a muh subtler link between struture and motion

of the �eld singularities that one uses for representing masses and harges.

A partiular example of this ourrene is evident [23℄ in a solution of the

Hermitian theory, that one annot help alling eletrostati in the sense of

Coulomb. It an be built by the method reported in [19℄; if referred to the

oordinates x

1

= x, x

2

= y, x

3

= z, x

4

= t, its fundamental tensor g

ik

reads:

(3.1) g

ik

=

0

B

B

�

�1 0 0 a

0 �1 0 b

0 0 �1 

�a �b � d

1

C

C

A

;

where

(3.2) d = 1 + a

2

+ b

2

+ 

2

;

and

(3.3) a = i�

;x

; b = i�

;y

;  = i�

;z

; i =

p

�1; �

;xx

+ �

;yy

+ �

;zz

= 0:
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The solution is stati, and its metri s

ik

an be written as

s

ik

=

p

d

0

B

B

�

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

C

C

A

(3.4)

�

1

p

d

0

B

B

�

�

;x

�

;x

�

;x

�

;y

�

;x

�

;z

0

�

;x

�

;y

�

;y

�

;y

�

;y

�

;z

0

�

;x

�

;z

�

;y

�

;z

�

;z

�

;z

0

0 0 0 0

1

C

C

A

;

hene the square of the line element, in the adopted oordinates, reads

(3.5) ds

2

= s

ik

dx

i

dx

k

= �

p

d

�

dx

2

+ dy

2

+ dz

2

� dt

2

�

�

1

p

d

(d�)

2

:

The solution always ful�ls the equation g

[[ik℄;l℄

= 0, and one feels entitled

to all it eletrostati in the sense of Coulomb. The reason is simple, and

geometri in harater. It is disussed in detail in [23℄, to whih the reader is

referred. Here we reall it briey. If one allows for soures at the right-hand

side of the Laplaian ourring in (3.3), one noties that the admission

of suh soures in the representative spae orresponds to introduing a

true harge density at the right-hand side of (2.10). Imagine now trying to

build loalized true harges by starting from loalized, disjoint soures in

the \Bildraum". One �nds that, when the harges are very far apart from

eah other, they will be both pointlike and spherially symmetri, with all

the auray needed to aount for the empirial onstraints, only provided

that the harges oupy, in the spae whose metri is s

ik

, just the positions

ditated by Coulomb's law of eletrostati equilibrium [23℄.

One might objet that naming \eletrostati" the harges assoiated with

j

i

is wholly premature, sine we have not yet explored what happens when

net harges are built from K

ikl

. But an exat solution allowing for suh

harges dispels the objetion beause, like one might well have expeted,

the \magnetostatis" exhibited by suh a solution has nothing to do with

Maxwell's eletromagnetism.

4. In Einstein's Hermitian theory the magneti harges are

onfined entities

One solution of this kind is easily found by the method given in [19℄; when

referred to polar ylindrial oordinates x

1

= r, x

2

= z, x

3

= ', x

4

= t, its

fundamental tensor g

ik

reads:

(4.1) g

ik

=

0

B

B

�

�1 0 Æ 0

0 �1 " 0

�Æ �" � �

0 0 �� 1

1

C

C

A

;
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with

(4.2) � = �r

2

+ Æ

2

+ "

2

� �

2

;

and

(4.3) Æ = ir

2

 

;r

; " = ir

2

 

;z

; � = �ir

2

 

;t

;  

;rr

+

 

;r

r

+  

;zz

�  

;tt

= 0:

Its metri s

ik

an be written as

s

ik

=

p

��

r

0

B

B

�

�1 0 0 0

0 �1 0 0

0 0 �r

2

0

0 0 0 1

1

C

C

A

(4.4)

+

r

3

p

��

0

B

B

�

 

;r

 

;r

 

;r

 

;z

0  

;r

 

;t

 

;r

 

;z

 

;z

 

;z

0  

;z

 

;t

0 0 0 0

 

;r

 

;t

 

;z

 

;t

0  

;t

 

;t

1

C

C

A

;

hene the square of the line element, in the adopted oordinates, reads

(4.5) ds

2

= s

ik

dx

i

dx

k

=

p

��

r

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

r

3

p

��

(d )

2

:

Let us onsider the partiular, stati solution for whih

(4.6)  = �

n

X

q=1

K

q

ln

p

q

+ z � z

q

r

;

where

(4.7) p

q

= [r

2

+ (z � z

q

)

2

℄

1=2

;

K

q

and z

q

are onstants. One obtains

Æ = i

n

X

q=1

K

q

r(z � z

q

)

p

q

;(4.8)

" = �i

n

X

q=1

K

q

r

2

p

q

; � = 0;

and

(4.9) � = �r

2

(1 + F );

with

F =

n

X

q=1

K

2

q

+ r

2

n

X

q=1

n(q

0

6=q)

X

q

0

=1

K

q

K

q

0

p

q

p

q

0

(4.10)

+

n

X

q=1

K

q

(z � z

q

)

p

q

n(q

0

6=q)

X

q

0

=1

K

q

0

(z � z

q

0

)

p

q

0

:
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Let n = 1, z

1

= 0. Then

(4.11) Æ = i

Krz

(r

2

+ z

2

)

1=2

; " = �i

Kr

2

(r

2

+ z

2

)

1=2

; � = �r

2

(1 +K

2

);

and the interval reads

(4.12)

ds

2

=

p

1 +K

2

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

K

2

p

1 +K

2

(zdr � rdz)

2

r

2

+ z

2

:

It is easy to asertain that this interval displays a onstant deviation from

elementary atness along the z-axis. The length dl of an in�nitesimal vetor

dx

i

, lying in a meridian plane, orthogonal to the z-axis, and drawn from a

point for whih r = 0, z = onst., reads

(4.13) dl =

�

�s

11

+

(s

12

)

2

s

22

�

1=2

dx

1

;

while the length of the in�nitesimal irle drawn by the tip of the vetor

dx

i

, when it is so rotated around the z-axis that ' grows by the amount 2�,

is

(4.14) �l = 2�

p

�s

33

:

Sine for the irle drawn in this way r = dx

1

, the value of the ratio R

between length and radius of the elementary irle turns out to be

(4.15) R = 2�

r

1�

Æ

2

r

2

;

hene, for the present partiular ase with n = 1, one obtains

(4.16) R = 2�

p

1 +K

2

:

But, in an axially symmetri solution, a onstant deviation from elemen-

tary atness along the symmetry axis an be removed by simply modifying

the de�nition of the manifold, sine nothing enfores the original, tentative

hoie 0 < ' � 2� for the oordinate '.

Let us �rst rewrite the interval (4.12) in spherial polar oordinates R,

#, ', t, obtained by performing, in the meridian planes, the oordinate

transformation

(4.17) r = R sin#; z = R os#:

Then (4.12) omes to read

ds

2

=

p

1 +K

2

�

�dR

2

�R

2

�

d#

2

+ sin

2

#d'

2

�

+ dt

2

�

(4.18)

+

K

2

p

1 +K

2

R

2

d#

2

:

By the oordinate transformation and �xation of the manifold

(4.19) '

0

=

p

1 +K

2

'; 0 < '

0

� 2�;
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the interval beomes

ds

2

=

p

1 +K

2

�

�dR

2

+ dt

2

�

(4.20)

�

R

2

p

1 +K

2

�

d#

2

+ sin

2

#d'

0

2

�

:

This manifold, besides displaying elementary atness everywhere, with the

exeption of R = 0, is spherially symmetri too. One reognizes, in the g

ik

assoiated with it, one partiular ase of the spherially symmetri solutions

[24℄ found by Papapetrou. For this partiular solution j

i

is everywhere

vanishing, while this is not the ase for K

ikl

. In fat, let us onsider in this

manifold a losed spatial two-surfae �, and de�ne the invariant integral

(4.21) I = �

1

8�i

Z

�

�

R

[ik℄

df

ik

;

where df

ik

is a surfae element of �. The integral is always vanishing if �

does not surround, say, the origin R = 0 of the spatial oordinates R, #, '

0

.

In the opposite ase one �nds

(4.22) I =

K

p

1 +K

2

;

i.e. K

ikl

exhibits a pole of magneti harge loated at R = 0 in the repre-

sentative spae, whih, aording to (4.20), is a point harge in the metri

sense too.

When n = 2, the solution de�ned by (4.1)-(4.10) annot desribe the

�eld of two isolated poles of magneti harge, lying on the z axis, whatever

the hoie of K

1

;K

2

and of z

1

; z

2

may be. This negative outome happens

despite the fat that the integral (4.21) is nonvanishing when it is extended

to a losed spatial two-surfae � surrounding either one or the other of the

above mentioned positions, and otherwise arbitrary, thereby proving the

existene of net harges built with K

ikl

both at r = 0, z = z

1

and at r = 0,

z = z

2

respetively.

In fat, at variane with what happens when n = 1, the ratio (4.15)

shows that the deviation from the elementary atness ourring on the z-

axis is only pieewise onstant, hene it an not be made to disappear by

an appropriate hoie of the manifold. Therefore, when n = 2, the solution

an not be onsidered as representing the �eld of two isolated bodies, just

like it happens, in the general relativity of 1915, with the Weyl-Levi Civita

�eld for two masses at rest [25, 26, 27℄.

The n = 3 ase is more fruitful, for, if we hoose

(4.23) K

1

= K

3

= K; K

2

= �K; z

1

< z

2

< z

3

;

we �nd that

(4.24) lim

r!0

F = K

2

along the whole z-axis. Therefore the ratio R, de�ned by (4.15), says that

the deviation from elementary atness, just like in the ase n = 1, an be
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eliminated through the appropriate de�nition of the manifold, by suitably

hoosing the range of '.

Let us remind that, in the eletrostati ase [23℄, we have found that

the eletri harges did oupy the positions of equilibrium ditated by

Coulomb's law, provided that the harges built with j

i

were pointlike in the

metri sense, and that the metri s

ik

happened to be spherially symmet-

ri in an in�nitesimal neighbourhood of eah harge, with all the auray

needed to meet with the empirial fats. Let us study under what ondi-

tions the three aligned magneti harges happen to enjoy the same geometri

properties.

An inspetion of the metri (4.4) for this solution shows that pointlike

harges in the representative spae are always pointlike in the metri sense

too. To hek for the spherial symmetry in an in�nitesimal neighbourhood

of eah harge, we need evaluating the interval ds, expressed by (4.5), in an

in�nitesimal neighbourhood of eah of the points loated at r = 0, z = z

i

;

i = 1; 2; 3. One �nds that, in the lose proximity to all the points of the

z-axis, the interval (4.5) an be approximated as

(4.25) ds

2

=

p

1 +K

2

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

1

p

1 +K

2

(rd )

2

:

In the lose proximity of the three points mentioned above one an use the

further approximation

(4.26)

1

p

1 +K

2

(rd )

2

=

K

2

p

1 +K

2

[(z � z

i

)dr � rdz℄

2

r

2

+ (z � z

i

)

2

:

Therefore, by performing severally, in the meridian planes, the oordinate

transformations

(4.27) r = R sin#; z � z

i

= R os#;

for i = 1; 2 and 3, one will �nd that in eah in�nitesimal neighbourhood

the interval will always take the same form, given by (4.18), i.e. the very

form that holds in the whole spae for the solution with n = 1. As a

onsequene, if one performs the transformation and �xation of the manifold

(4.19) also in this ase with n = 3, de�ned by (4.23), one �nds that the

interval is spherially symmetri in the in�nitesimal neighbourhood of eah

of the pointlike magneti harges.

The geometrial onditions on the metri �eld surrounding the harges,

whose ful�llment

1

, in the eletrostati solution of Setion 3, ensures that

Coulomb's law is an outome of the theory, in the partiular solution on-

sidered here are always satis�ed exatly, whatever the mutual positions of

the three magneti harges may be, provided that the order z

1

< z

2

< z

3

is

respeted. One therefore draws the physial onlusion that these aligned

magneti harges by no means behave like magneti monopoles would do,

if they were allowed for, in Maxwell's eletromagnetism. The indi�erent

1

although with the approximation expounded in [23℄.
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equilibrium of the three harges exhibited by this magnetostati solution

of the Hermitian theory is only possible if the interation of the harges is

independent of their mutual distanes.

One an objet to this onlusion, beause the fat that the harges are

both pointlike in the metrial sense, and eah endowed with a spherially

symmetri in�nitesimal neighbourhood for whatever hoie of z

1

< z

2

< z

3

,

might well mean that these harges are not interating at all. But, as soon as

the onditions (4.23) for K

i

are not respeted, a deviation from elementary

atness appears on strethes of the z-axis, that an not be made to disappear

through the hoie of the manifold, just like it ours in the solution with

n = 2, and also in the two-body, stati solutions of the general relativity

of 1915. Moreover, approximate alulations done by Treder already [28℄ in

1957 both by the EIH method [29, 22℄ and by the test-partile method [30℄

of Papapetrou revealed the existene, in this gravito-eletromagnetism, of

a entral fore between the poles built with K

ikl

, that does not depend on

their mutual distane, and that, in the Hermitian theory, is attrative when

the poles have harges of opposite sign.

The same onlusion an be drawn also with an argument that relies on

another exat solution [32℄ belonging to the lass desribed in [19℄. The

solution is a Hermitian generalization of the Curzon metri [33℄. In the

ylindrial oordinates of its representative spae two Curzon masses, lo-

ated at r = 0, z = z

1

and r = 0, z = z

2

respetively, are endowed with

point magneti harges. For �xed z

1

and z

2

, by hoosing appropriately the

values of the onstants assoiated with both the masses and the harges,

one sueeds in obtaining that no deviation from elementary atness our

along the whole z-axis. One interprets this irumstane as showing that

the gravitational fore between the masses is balaned by the fore that the

magneti harges exert on eah other. From the weak �eld limit of this exat

solution, when the gravitational pull redues to the Newtonian behaviour,

one onludes too that the fore between the magneti harges is attrative

when the harges have opposite sign, and that it does not depend on their

mutual distane

2

. In 1980 Treder interpreted [31℄ his �ndings of 1957 in a

hromodynami sense.

5. Conlusion

Talking of onlusions, here and now, sounds ironially premature. We

are still at the very beginnings, sine the theory represents suh a total

departure from the known paths. Considering g

[ik℄

and R

[ik℄

as eletromag-

neti indutions and �elds, like Shr�odinger �rst [5℄ envisaged sixty years

ago, leads to a gravito-eletromagnetism endowed with a range of possibili-

ties so wide and unexplored, thanks to the intriated di�erential onstitutive

2

In the mentioned paper [32℄, the deviation from the elementary atness was alulated

by availing of g

(ik)

as metri. The alulation was repeated with the right metri s

ik

, and

has provided just the same result.



15

relation linking these quantities, that one might well despair that its ontent

will ever be unraveled, and proved to be physially meaningful or not. And

yet, thanks to approximate and to exat �ndings, some glimpses about the

possible ontent of the theory have appeared during the lapse of the deades.

Besides, of ourse, Einstein's gravitation of 1915, the theory appears to on-

tain, aording to partiular exat solutions, eletri harges that behave

as presribed by Coulomb's eletrostatis [23℄, as well as magneti poles

that interat with fores not depending on their mutual distane. When

onfronted with suh outomes, one an not help remembering the hopes

expressed by Shr�odinger in the paper quoted above:

\We may, I think, hold out the prospet, that those skew

�elds together, whatever may emerge as the appropriate in-

terpretation, embrae both the eletromagneti and the nu-

lear �eld and their interplay with eah other and with grav-

itation."

and dare suggesting, on the basis of the admittedly sant, but unambiguous

evidene gathered until now, that the work on this theory, abandoned so

many deades ago, be resumed in the years to ome.
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