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CONFINEMENT IN EINSTEIN'S UNIFIED FIELD THEORY

SALVATORE ANTOCI, DIERCK-EKKEHARD LIEBSCHER, AND LUIGI MIHICH

Abstra
t. After re
alling the mathemati
al stru
ture of Einstein's Her-

mitian extension of the gravitational theory of 1915, the problem, whe-

ther its �eld equations should admit of phenomenologi
al sour
es at

their right-hand sides, and how this addition should be done, is ex-

pounded by relying on a thread of essential insights and a
hievements by

S
hr�odinger, Kur�suno�glu, Li
hnerowi
z, H�ely and Bor
hsenius. When

sour
es are appended to all the �eld equations, from the latter and from

the 
ontra
ted Bian
hi identities a sort of gravoele
trodynami
s appears,

that totally departs from the so 
alled Einstein-Maxwell theory, sin
e its


onstitutive equation, that rules the link between indu
tions and �elds,

is a very 
ompli
ated di�erential relation that allows for a mu
h wider,

still pra
ti
ally unexplored range of possible o

urren
es.

In this sort of theory one 
an allow for both an ele
tri
 and a magneti


four-
urrent, whi
h are not a physi
ally wrong repli
a of ea
h other,

like it would o

ur if both these 
urrents were allowed in Maxwell's

va
uum. Parti
ular stati
 exa
t solutions show that, due to the pe
uliar


onstitutive equation, while ele
tri
 
harges with a pole stru
ture behave

a

ording to Coulomb's law, magneti
 
harges with a pole stru
ture

intera
t with for
es not depending on their mutual distan
e. The latter

behaviour was already dis
overed by Treder in 1957 with an approximate


al
ulation, while looking for ordinary ele
tromagnetism in the theory.

He also showed that in the Hermitian theory magneti
 
harges of unlike

sign mutually attra
t, hen
e they are permanently 
on�ned entities.

The exa
t solutions 
on�rm this �nding, already interpreted in 1980 by

Treder in a 
hromodynami
 sense.

1. Introdu
tion

With their theory of the nonsymmetri
 �eld, either in the metri
-aÆne

[1, 2, 3, 4℄ or in the purely aÆne version [5, 6, 7, 8℄, while providing a

last demonstration of their mathemati
al insight, Einstein and S
hr�odinger

left as heritage to the future generations the heavy task of trying to at-

tribute a physi
al interpretation to the very similar �eld equations that, by

pro
eeding from di�erent startpoints, both of them eventually arrived at.

We shall 
onsider here for de�niteness the theory proposed by Einstein, in

its 
omplex, Hermitian version [3℄. In this theory, de�ned on a real, four-

dimensional manifold, one avails, as independent fundamental quantities, of

the Hermitian tensor g

ik

= g

(ik)

+g

[ik℄

and of the Hermitian aÆne 
onne
tion

�

i

kl

= �

i

(kl)

+ �

i

[kl℄

. From g

ik

one builds the Hermitian 
ontravariant tensor

1
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g

ik

su
h that

(1.1) g

il

g

kl

= g

li

g

lk

= Æ

i

k

;

and, sin
e g � det (g

ik

) is a real quantity, the Hermitian tensor density

(1.2) g

ik

=

p

�gg

ik

:

In Einstein's Hermitian theory, under quite general 
onditions [9℄, the Her-

mitian aÆne 
onne
tion �

i

kl

is uniquely de�ned by the tensor g

ik

through

the transposition invariant equation

(1.3) g

ik;l

� g

nk

�

n

il

� g

in

�

n

lk

= 0:

Let the further �eld equation

(1.4) g

[is℄

;s

= 0

be satis�ed. From (1.3) one gets [10℄ that (1.4) is equivalent to the injun
tion

(1.5) �

i

� �

l

[il℄

= 0

on the skew part of the aÆne 
onne
tion. From (1.3) alone it stems further:

(1.6) �

a

(ia);k

= �

a

(ka);i

:

The ful�llment of both (1.3) and (1.4) is 
ru
ial for the properties of the

two generally nonvanishing 
ontra
tions R

i

kli

and R

i

ilm

of the Riemann


urvature tensor

(1.7) R

i

klm

(�) = �

i

kl;m

� �

i

km;l

� �

i

al

�

a

km

+ �

i

am

�

a

kl

:

The se
ond 
ontra
tion reads in general:

(1.8) R

i

ilm

= �

i

il;m

� �

i

im;l

:

When both (1.3) and (1.4) are satis�ed, this se
ond 
ontra
tion just vanishes

due to (1.5) and (1.6); hen
e, like it o

urs with the symmetri
 theory of

1915, also the problem of 
hoosing whi
h 
ombination of the 
ontra
tions

one should introdu
e in the �eld equations simply disappears. Under the

same 
ir
umstan
es, the �rst 
ontra
tion

(1.9) R

kl

(�) = �

i

kl;i

� �

i

ki;l

� �

a

ki

�

i

al

+ �

a

kl

�

i

ai

;

i.e. the Ri

i tensor, happens to be Hermitian. Einstein proposed that its

symmetri
 and skew parts should ful�ll the �eld equations

(1.10) R

(ik)

(�) = 0

and

(1.11) R

[ik℄;l

(�) +R

[kl℄;i

(�) +R

[li℄;k

(�) = 0

respe
tively. The �eld equations (1.3), (1.4) and (1.10), (1.11) of what

Einstein 
alled the Hermitian generalization of the theory of gravitation


an be dedu
ed from a variational prin
iple, e.g. in the manner shown by
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Einstein in [3℄, or in the more transparent way, that avails of the \starred

aÆnity", envisaged [6℄ by S
hr�odinger.

We have indulged, with these introdu
tory remarks, in expounding the

mathemati
al stru
ture of Einstein's Hermitian theory, sin
e the knowledge

of the latter is by no means widespread, while it seems essential for properly

understanding what sort of hopes sustained both Einstein and S
hr�odinger

in their de
ade-long e�ort, and what means they believed to be the most

appropriate for trying to ful�ll su
h hopes.

In the many te
hni
al papers written in the de
ade 1945-1955 on the

subje
t of the \generalized theory of gravitation", Einstein spent very few

words on the possible physi
al 
ontent of the theory. In his \Autobiogra-

phis
hes" [11℄ he was very 
lear about the reasons for believing that the

future progress of physi
al theory 
ould not be based on quantum theory,

due to the statisti
al 
hara
ter of the latter, and to its allowan
e for the

superposition prin
iple; to him, any real progress 
ould only be a
hieved by

starting from the general theory of relativity, sin
e in Einstein's opinion,\its

equations are more likely to assert anything pre
ise than all the other equa-

tions of physi
s". From the dis
overy of general relativity he had also learned

that no 
olle
tion of empiri
al fa
ts, however extensive, 
ould have been of

help in building equations of su
h intri
a
y: equations of su
h 
ompli
ation


an only be retrieved when one has found a logi
ally simple mathemati
al


ondition that determines the equations in a 
omplete or nearly 
omplete

way. Hermitian symmetry or, more generally, invarian
e under transposi-

tion, that both represent a natural mathemati
al extension of the symmetry

properties of the general relativity of 1915, 
ould be suÆ
iently strong formal


onditions, upon whi
h one might attempt a generalization of the previous

theory, based on real symmetri
 quantities.

At varian
e with the buoyant optimism permeating his �rst attempt on

the subje
t [1℄, in his later work Einstein, while sometimes asserting that,

sin
e (1.4) had to hold everywhere, g

[[ik℄;l℄

might have to assume the rôle of

ele
tri
 four-
urrent [3, 12℄, be
ame 
autious in foretelling what the possible

physi
al 
ontent of his new theory might result to be. In the autobiograph-

i
al notes he limited himself to remark that, in his opinion, equations (1.3),

(1.4), (1.10), (1.11) 
onstituted the most natural generalization of the equa-

tions of gravitation, just adding, in a footnote, that in his opinion the theory

had a fair likelihood of proving 
orre
t, provided that the way to a satis-

fa
tory representation of the physi
al reality on the basis of the 
ontinuum

will turn out to be feasible in general. He also believed that, sin
e these

equations 
onstituted the natural 
ompletion of the equations of 1915, no

sour
e terms should be appended at their right-hand sides. His \Autobio-

graphis
hes" therefore ends with a question mark, left like a lega
y to the

posterity: what happens with the solutions of these equations that are free

from singularities in the whole spa
e?

On the possible physi
al 
ontent of the theory, S
hr�odinger was more ex-

pli
it already in his �rst paper [5℄, where he 
learly shows to have per
eived
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the 
omplete novelty of a fundamental feature of the theory, that had to

be
ome a 
ru
ial issue in the years to 
ome, and eventually led to the aban-

donment of the e�orts aimed at the understanding of the theory, sin
e it


onstitutes too large a departure from the way we are used to think about

the ele
tromagneti
 intera
tion.

2. Interpreting the theory along a path made possible by

S
hr

�

odinger, Kursunoglu, Li
hnerowi
z, H

�

ely and

Bor
hsenius

In [5℄ S
hr�odinger deals with his own purely aÆne theory, whose �eld

equations, if 
onsidered from a trivially pragmati
 standpoint, di�er from

the ones reported in Se
tion 1 only due to the presen
e of the \
osmologi
al

terms" �g

(ik)

and �g

[[ik℄;l℄

at the right-hand sides of equations (1.10) and

(1.11) respe
tively. His remarks about the possible ele
tromagneti
 mean-

ing of his theory 
an be extended to the 
ase when � = 0, and mean that

equations (1.4) and (1.11) should be interpreted like a sort of (modi�ed)

Maxwell equations, with g

[ik℄

and R

[ik℄

in the rôles of \
ontravariant den-

sity" and \
ovariant �eld tensor" respe
tively. Needless to say, su
h an

interpretation entails a total departure from the behaviour that one might

expe
t from the a
quaintan
e with Maxwell's equations in va
uo, where the

two quantities previously mentioned within quotation marks are mutually

related by a simple 
onstitutive equation, that only entails the metri
 in the

usual tasks of raising indi
es and forming densities from tensors. g

[ik℄

and

R

[ik℄


an play in (1.4) and (1.11) the rôles envisaged by S
hr�odinger only

if the 
onstitutive equation of this \ele
tromagnetism" is of a kind never

heard of before, namely, a highly involved di�erential relation, whose 
on-

tent is by no means surveyable in its expli
it form, sin
e its determination

requires �rst solving (1.3) for the aÆne 
onne
tion, and then substituting

the resulting expressions �

i

kl

= �

i

kl

(g

pq

; g

pq;r

) in R

[ik℄

(�). It is well known [9℄

that already the �rst step does not yield in general a surveyable out
ome,

hen
e no hint 
an be drawn a priori about the relation between indu
tions

and �elds di
tated by the Hermitian theory.

However, despite the total ignoran
e about its physi
al meaning, there is

one thing that 
an be subje
ted to a 
lose s
rutiny in this sort of ele
tro-

magnetism. In keeping with S
hr�odinger's and Einstein's 
onvi
tion that

the theory did 
onstitute the 
ompletion of the theory of 1915, no sour
es

are to be allowed at the right-hand sides of all its �eld equations. This

holds in parti
ular for (1.4) and (1.11): as S
hr�odinger [5℄ notes with some

regret, these equations of unmistakable ele
tromagneti
 form are \used up";

their left-hand sides 
annot be availed of for de�ning, like it 
ould have

been possible in prin
iple, two 
onserved four-
urrents asso
iated with the

skew �elds. Therefore, and again at varian
e with what o

urs in Maxwell's

ele
tromagnetism, we have to look elsewhere for the de�nition of, say, the

ele
tri
 four-
urrent. Su
h a further departure from the known patterns
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ould be wel
ome and sought for, be
ause, as 
omplained by Einstein, \Das

Elektron ist ein Fremder in die Elektrodynamik". An ele
tri
 four-
urrent

whose 
ontinuous distribution were di
tated by the �eld equations them-

selves would represent the solution of many problems that plague theoreti
al

physi
s. This is why Einstein suggested that g

[[ik℄;l℄

might have to assume

the rôle of ele
tri
 four-
urrent [3, 12℄; in [5℄ S
hr�odinger added three more


andidates to su
h a high task. But (1.4) and (1.11) are just the ele
tromag-

neti
 equations that one would write in the absen
e of 
harges and 
urrents

for some 
ontinuum endowed with a very strange 
onstitutive equation, and

the Hermitian theory of relativity is a natural generalization of an eminently

su

essful prede
essor, whose su

ess was however only possible through the

addition, as sour
e, of the phenomenologi
al energy tensor. Therefore the

shadow of doubt remained, that the new theory might need phenomenolog-

i
al sour
es too.

Su
h a doubt was strengthened by the study of the 
ontra
ted Bian
hi

identities. One may �nd the derivation of these identities e.g. in [7℄, where

S
hr�odinger, in keeping with his 
onvi
tion that the theory allowed for a

merging of gravitational and nongravitational �elds in a total entity, did

not split their expression by separating the terms where only symmetri


quantities appear from the terms where only skew quantities o

ur, like e.g.

Kur�suno�glu did a few years later [13, 14℄. When the �eld equations (1.3),

(1.4) hold, the 
ontra
ted Bian
hi identities found by S
hr�odinger 
an be

written as

(2.1)

h

p

�g

�

g

ik

R

il

+ g

ki

R

li

�i

;k

=

p

�gg

ik

R

ik;l

:

Through the above mentioned splitting, the same identities 
ome to read

�

2

p

�gg

(ik)

R

(il)

�

;k

�

p

�gg

(ik)

R

(ik);l

(2.2)

=

p

�gg

[ik℄

�

R

[ik℄;l

+R

[kl℄;i

+R

[li℄;k

�

:

But in [14℄ Kur�suno�glu provided an even more allusive writing. He noti
ed

that, if one introdu
es a symmetri
 tensor s

ik

su
h that

(2.3)

p

�ss

ik

=

p

�gg

(ik)

;

where s is the determinant of the tensor s

ik

, and s

ik

s

il

= Æ

k

l

, the left-hand

side of (2.2) 
an be rewritten as follows:

�

2

p

�gg

(ik)

R

(il)

�

;k

�

p

�gg

(ik)

R

(ik);l

(2.4)

=

�

2

p

�ss

ik

R

(il)

�

;k

�

�

p

�ss

ik

R

(ik)

�

;l

:

Remarkably enough, the semi
olon stands for the 
ovariant di�erentiation

with respe
t to the Christo�el symbols built with s

ik

. Hen
e the 
ontra
ted

Bian
hi identities of Einstein's nonRiemannian extension of the va
uum gen-

eral relativity of 1915 admit a sort of Riemannian rewriting that avails of
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the tensor s

ik

:

�

s

ik

R

(il)

�

1

2

Æ

k

l

s

pq

R

(pq)

�

;k

(2.5)

=

1

2

r

g

s

g

[ik℄

�

R

[ik℄;l

+R

[kl℄;i

+R

[li℄;k

�

;

provided, of 
ourse, that equations (1.3) and (1.4) are satis�ed. The same

form of the weak identities was arrived at later [15℄ by H�ely, who was even

more prepared to appre
iate the suggestions 
oming from Kur�suno�glu's way

of expression, thanks to a pre
ious result [16, 17℄ found in the meantime:

through his study of the Cau
hy problem in Einstein's new theory, Li
h-

nerowi
z had 
on
luded that the metri
 l

ik

appearing in the eikonal equation

(2.6) l

ik

�

i

f�

k

f = 0

for the wave surfa
es of the theory had to be

(2.7) l

ik

= g

(ik)

;

or, one must add, any metri
 
onformally related to g

(ik)

. Sin
e s

ik

, de-

�ned by (2.3), just belonged to this 
lass of metri
s, H�ely had one more

reason for 
riti
ally investigating how the expression (2.5) might assume a

physi
al meaning, like it o

urs in the theory of 1915, where the 
ontra
ted

Bian
hi identities just say that the 
ovariant divergen
e of the energy tensor

is vanishing.

When 
onfronted with the weak identity (2.5), the sort of regret felt by

S
hr�odinger on noti
ing that the left-hand sides of (1.4) and (1.11) were

\used up" for expressing the vanishing of two four-
urrents 
annot help be-


oming a serious 
on
ern. One has to withstand one further disappointment:

by adhering to the tenet endorsed both by Einstein and by S
hr�odinger, a
-


ording to whi
h no sour
e terms should be appended at the right-hand sides

of their equations, both sides of (2.5) simply vanish. Are we not missing in

this way an o

asion o�ered by the theory? The very �nding of (2.5) led

Kur�suno�glu to modify [14℄ Einstein's �eld equations in order to provide the

weak identities with physi
al meaning in a �eld theoreti
al way. In a less

daring mood, H�ely appended [18℄ phenomenologi
al sour
es at the right-

hand sides of both (1.10) and (1.11), with the tentative physi
al meaning of

energy tensor for matter and of ele
tri
 
urrent respe
tively. In su
h a way,

(2.5) 
omes to assert that the nonvanishing of the 
ovariant divergen
e of

the energy tensor density of 
harged matter is due to the Lorentz 
oupling

of its ele
tri
 four-
urrent with the ele
tromagneti
 �eld density g

[ik℄

.

In the same mood, one may well ask what hinders appending phenomeno-

logi
al sour
es to all the �eld equations. The question is even more justi�ed,

sin
e a 
lass of exa
t solutions to the equations of the Hermitian theory has

been found [19℄, that intrinsi
ally depend on three 
oordinates. Solutions



7

belonging to this 
lass appear endowed with physi
al meaning when sour
es

are appended at the right-hand sides of both (1.11) and (1.4).

There is indeed one hindran
e, be
ause, as shown in Se
tion 1, the satis-

fa
tion of (1.4) is just one of the ne
essary 
onditions for getting a Hermitian

Ri

i tensor. The remedy was found [20℄ by Bor
hsenius; one needs substi-

tuting the symmetrized Ri

i tensor

(2.8) R

kl

(�) = �

i

kl;i

�

1

2

�

�

i

ki;l

+�

i

li;k

�

� �

a

ki

�

i

al

+ �

a

kl

�

i

ai

;

for the plain Ri

i tensor (1.9). The substitution does not a�e
t the original

�eld equations of Einstein and S
hr�odinger in va
uo, sin
e there the modi�ed

Ri

i tensor of Bor
hsenius is equal to the true Ri

i tensor, but is e�e
tive

in obtaining a set of equations with sour
es that is always Hermitian. When

s

ik

is adopted as metri
, in the footsteps of H�ely, this set, whose derivation

is reported e.g. in [21℄, reads:

(2.9) g

qr

;p

+ g

sr

�

q

sp

+ g

qs

�

r

ps

� g

qr

�

t

(pt)

=

4�

3

(j

q

Æ

r

p

� j

r

Æ

q

p

);

(2.10) g

[is℄

;s

= 4�j

i

;

(2.11)

�

R

(ik)

(�) = 8�(T

ik

�

1

2

s

ik

s

pq

T

pq

);

(2.12)

�

R

[[ik℄;l℄

= 8�K

ikl

:

In this way the two 
onserved four-
urrents j

i

and K

ikl

, and the symmet-

ri
 energy tensor T

ik

are appended to the original equations in a manner

that does not spoil their Hermitian 
hara
ter, and uniquely de�nes the phe-

nomenologi
al sour
es in terms of their geometri
 
ounterparts. The relevant


ontra
ted Bian
hi identities are [21℄ in this 
ase

� 2(g

(is)

�

R

(ik)

(�))

;s

+ g

(pq)

�

R

(pq);k

(�)(2.13)

= 2g

[is℄

;s

�

R

[ik℄

(�) + g

[is℄

�

R

[[ik℄;s℄

(�):

By substituting here the material sour
es de�ned above, and by de�ning the


ontravariant energy tensor density as

(2.14) T

ik

=

p

�ss

ip

s

kq

T

pq

;

one eventually extends H�ely's result [18℄ to the form

(2.15) T

ls

;s

=

1

2

s

lk

�

j

i

�

R

[ki℄

(�) +K

iks

g

[si℄

�

;

where the semi
olon again indi
ates the 
ovariant derivative done with re-

spe
t to the Christo�el 
onne
tion built with s

ik

. By 
ompleting H�ely's

proposal, this equation asserts that the 
ovariant divergen
e of T

ik

does not

vanish in general be
ause of the Lorentz 
oupling of the 
onserved 
urrent
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K

iks

with g

[si℄

, and also be
ause of the Lorentz 
oupling of the 
onserved


urrent density j

i

with the �eld

�

R

[ki℄

. But, sin
e the 
onstitutive equation

of this sort of ele
tromagnetism represents a total departure from the one

prevailing in the va
uum of Maxwell's ele
tromagnetism, we shall not fear

that the duality present in the latter shall lead to a dupli
ate representation

of the same physi
al behaviour, with ele
tri
 and magneti
 four-
urrents

both produ
ing the same phenomena under a duality transformation. In

Maxwell's ele
tromagnetism this o

urren
e is avoided by imposing, in keep-

ing with experien
e, that magneti
 four-
urrents do not exist. In Einstein's

Hermitian theory this injun
tion is neither required, nor helpful. The ex-

a
t solutions show in fa
t that the two four-
urrents give rise to 
ompletely

di�erent intera
tions, both seemingly needed for the des
ription of nature.

3. The ele
trostati
s of Einstein's Hermitian theory

The simple form of equation (2.15) should de
eive nobody: it is evident

that the \parti
le in �eld" imagery, already misleading in Maxwell's ele
tro-

dynami
s, is totally out of pla
e both in the general relativity of 1915 and

in its Hermitian extension. From su
h nonlinear theories, both in exa
t and

in approximate solutions, as well exhibited [22℄ in the work of Einstein and

Infeld, one must expe
t a mu
h subtler link between stru
ture and motion

of the �eld singularities that one uses for representing masses and 
harges.

A parti
ular example of this o

urren
e is evident [23℄ in a solution of the

Hermitian theory, that one 
annot help 
alling ele
trostati
 in the sense of

Coulomb. It 
an be built by the method reported in [19℄; if referred to the


oordinates x

1

= x, x

2

= y, x

3

= z, x

4

= t, its fundamental tensor g

ik

reads:

(3.1) g

ik

=

0

B

B

�

�1 0 0 a

0 �1 0 b

0 0 �1 


�a �b �
 d

1

C

C

A

;

where

(3.2) d = 1 + a

2

+ b

2

+ 


2

;

and

(3.3) a = i�

;x

; b = i�

;y

; 
 = i�

;z

; i =

p

�1; �

;xx

+ �

;yy

+ �

;zz

= 0:
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The solution is stati
, and its metri
 s

ik


an be written as

s

ik

=

p

d

0

B

B

�

�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

1

C

C

A

(3.4)

�

1

p

d

0

B

B

�

�

;x

�

;x

�

;x

�

;y

�

;x

�

;z

0

�

;x

�

;y

�

;y

�

;y

�

;y

�

;z

0

�

;x

�

;z

�

;y

�

;z

�

;z

�

;z

0

0 0 0 0

1

C

C

A

;

hen
e the square of the line element, in the adopted 
oordinates, reads

(3.5) ds

2

= s

ik

dx

i

dx

k

= �

p

d

�

dx

2

+ dy

2

+ dz

2

� dt

2

�

�

1

p

d

(d�)

2

:

The solution always ful�ls the equation g

[[ik℄;l℄

= 0, and one feels entitled

to 
all it ele
trostati
 in the sense of Coulomb. The reason is simple, and

geometri
 in 
hara
ter. It is dis
ussed in detail in [23℄, to whi
h the reader is

referred. Here we re
all it brie
y. If one allows for sour
es at the right-hand

side of the Lapla
ian o

urring in (3.3), one noti
es that the admission

of su
h sour
es in the representative spa
e 
orresponds to introdu
ing a

true 
harge density at the right-hand side of (2.10). Imagine now trying to

build lo
alized true 
harges by starting from lo
alized, disjoint sour
es in

the \Bildraum". One �nds that, when the 
harges are very far apart from

ea
h other, they will be both pointlike and spheri
ally symmetri
, with all

the a

ura
y needed to a

ount for the empiri
al 
onstraints, only provided

that the 
harges o

upy, in the spa
e whose metri
 is s

ik

, just the positions

di
tated by Coulomb's law of ele
trostati
 equilibrium [23℄.

One might obje
t that naming \ele
trostati
" the 
harges asso
iated with

j

i

is wholly premature, sin
e we have not yet explored what happens when

net 
harges are built from K

ikl

. But an exa
t solution allowing for su
h


harges dispels the obje
tion be
ause, like one might well have expe
ted,

the \magnetostati
s" exhibited by su
h a solution has nothing to do with

Maxwell's ele
tromagnetism.

4. In Einstein's Hermitian theory the magneti
 
harges are


onfined entities

One solution of this kind is easily found by the method given in [19℄; when

referred to polar 
ylindri
al 
oordinates x

1

= r, x

2

= z, x

3

= ', x

4

= t, its

fundamental tensor g

ik

reads:

(4.1) g

ik

=

0

B

B

�

�1 0 Æ 0

0 �1 " 0

�Æ �" � �

0 0 �� 1

1

C

C

A

;
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with

(4.2) � = �r

2

+ Æ

2

+ "

2

� �

2

;

and

(4.3) Æ = ir

2

 

;r

; " = ir

2

 

;z

; � = �ir

2

 

;t

;  

;rr

+

 

;r

r

+  

;zz

�  

;tt

= 0:

Its metri
 s

ik


an be written as

s

ik

=

p

��

r

0

B

B

�

�1 0 0 0

0 �1 0 0

0 0 �r

2

0

0 0 0 1

1

C

C

A

(4.4)

+

r

3

p

��

0

B

B

�

 

;r

 

;r

 

;r

 

;z

0  

;r

 

;t

 

;r

 

;z

 

;z

 

;z

0  

;z

 

;t

0 0 0 0

 

;r

 

;t

 

;z

 

;t

0  

;t

 

;t

1

C

C

A

;

hen
e the square of the line element, in the adopted 
oordinates, reads

(4.5) ds

2

= s

ik

dx

i

dx

k

=

p

��

r

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

r

3

p

��

(d )

2

:

Let us 
onsider the parti
ular, stati
 solution for whi
h

(4.6)  = �

n

X

q=1

K

q

ln

p

q

+ z � z

q

r

;

where

(4.7) p

q

= [r

2

+ (z � z

q

)

2

℄

1=2

;

K

q

and z

q

are 
onstants. One obtains

Æ = i

n

X

q=1

K

q

r(z � z

q

)

p

q

;(4.8)

" = �i

n

X

q=1

K

q

r

2

p

q

; � = 0;

and

(4.9) � = �r

2

(1 + F );

with

F =

n

X

q=1

K

2

q

+ r

2

n

X

q=1

n(q

0

6=q)

X

q

0

=1

K

q

K

q

0

p

q

p

q

0

(4.10)

+

n

X

q=1

K

q

(z � z

q

)

p

q

n(q

0

6=q)

X

q

0

=1

K

q

0

(z � z

q

0

)

p

q

0

:
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Let n = 1, z

1

= 0. Then

(4.11) Æ = i

Krz

(r

2

+ z

2

)

1=2

; " = �i

Kr

2

(r

2

+ z

2

)

1=2

; � = �r

2

(1 +K

2

);

and the interval reads

(4.12)

ds

2

=

p

1 +K

2

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

K

2

p

1 +K

2

(zdr � rdz)

2

r

2

+ z

2

:

It is easy to as
ertain that this interval displays a 
onstant deviation from

elementary 
atness along the z-axis. The length dl of an in�nitesimal ve
tor

dx

i

, lying in a meridian plane, orthogonal to the z-axis, and drawn from a

point for whi
h r = 0, z = 
onst., reads

(4.13) dl =

�

�s

11

+

(s

12

)

2

s

22

�

1=2

dx

1

;

while the length of the in�nitesimal 
ir
le drawn by the tip of the ve
tor

dx

i

, when it is so rotated around the z-axis that ' grows by the amount 2�,

is

(4.14) �l = 2�

p

�s

33

:

Sin
e for the 
ir
le drawn in this way r = dx

1

, the value of the ratio R

between length and radius of the elementary 
ir
le turns out to be

(4.15) R = 2�

r

1�

Æ

2

r

2

;

hen
e, for the present parti
ular 
ase with n = 1, one obtains

(4.16) R = 2�

p

1 +K

2

:

But, in an axially symmetri
 solution, a 
onstant deviation from elemen-

tary 
atness along the symmetry axis 
an be removed by simply modifying

the de�nition of the manifold, sin
e nothing enfor
es the original, tentative


hoi
e 0 < ' � 2� for the 
oordinate '.

Let us �rst rewrite the interval (4.12) in spheri
al polar 
oordinates R,

#, ', t, obtained by performing, in the meridian planes, the 
oordinate

transformation

(4.17) r = R sin#; z = R 
os#:

Then (4.12) 
omes to read

ds

2

=

p

1 +K

2

�

�dR

2

�R

2

�

d#

2

+ sin

2

#d'

2

�

+ dt

2

�

(4.18)

+

K

2

p

1 +K

2

R

2

d#

2

:

By the 
oordinate transformation and �xation of the manifold

(4.19) '

0

=

p

1 +K

2

'; 0 < '

0

� 2�;
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the interval be
omes

ds

2

=

p

1 +K

2

�

�dR

2

+ dt

2

�

(4.20)

�

R

2

p

1 +K

2

�

d#

2

+ sin

2

#d'

0

2

�

:

This manifold, besides displaying elementary 
atness everywhere, with the

ex
eption of R = 0, is spheri
ally symmetri
 too. One re
ognizes, in the g

ik

asso
iated with it, one parti
ular 
ase of the spheri
ally symmetri
 solutions

[24℄ found by Papapetrou. For this parti
ular solution j

i

is everywhere

vanishing, while this is not the 
ase for K

ikl

. In fa
t, let us 
onsider in this

manifold a 
losed spatial two-surfa
e �, and de�ne the invariant integral

(4.21) I = �

1

8�i

Z

�

�

R

[ik℄

df

ik

;

where df

ik

is a surfa
e element of �. The integral is always vanishing if �

does not surround, say, the origin R = 0 of the spatial 
oordinates R, #, '

0

.

In the opposite 
ase one �nds

(4.22) I =

K

p

1 +K

2

;

i.e. K

ikl

exhibits a pole of magneti
 
harge lo
ated at R = 0 in the repre-

sentative spa
e, whi
h, a

ording to (4.20), is a point 
harge in the metri


sense too.

When n = 2, the solution de�ned by (4.1)-(4.10) 
annot des
ribe the

�eld of two isolated poles of magneti
 
harge, lying on the z axis, whatever

the 
hoi
e of K

1

;K

2

and of z

1

; z

2

may be. This negative out
ome happens

despite the fa
t that the integral (4.21) is nonvanishing when it is extended

to a 
losed spatial two-surfa
e � surrounding either one or the other of the

above mentioned positions, and otherwise arbitrary, thereby proving the

existen
e of net 
harges built with K

ikl

both at r = 0, z = z

1

and at r = 0,

z = z

2

respe
tively.

In fa
t, at varian
e with what happens when n = 1, the ratio (4.15)

shows that the deviation from the elementary 
atness o

urring on the z-

axis is only pie
ewise 
onstant, hen
e it 
an not be made to disappear by

an appropriate 
hoi
e of the manifold. Therefore, when n = 2, the solution


an not be 
onsidered as representing the �eld of two isolated bodies, just

like it happens, in the general relativity of 1915, with the Weyl-Levi Civita

�eld for two masses at rest [25, 26, 27℄.

The n = 3 
ase is more fruitful, for, if we 
hoose

(4.23) K

1

= K

3

= K; K

2

= �K; z

1

< z

2

< z

3

;

we �nd that

(4.24) lim

r!0

F = K

2

along the whole z-axis. Therefore the ratio R, de�ned by (4.15), says that

the deviation from elementary 
atness, just like in the 
ase n = 1, 
an be
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eliminated through the appropriate de�nition of the manifold, by suitably


hoosing the range of '.

Let us remind that, in the ele
trostati
 
ase [23℄, we have found that

the ele
tri
 
harges did o

upy the positions of equilibrium di
tated by

Coulomb's law, provided that the 
harges built with j

i

were pointlike in the

metri
 sense, and that the metri
 s

ik

happened to be spheri
ally symmet-

ri
 in an in�nitesimal neighbourhood of ea
h 
harge, with all the a

ura
y

needed to meet with the empiri
al fa
ts. Let us study under what 
ondi-

tions the three aligned magneti
 
harges happen to enjoy the same geometri


properties.

An inspe
tion of the metri
 (4.4) for this solution shows that pointlike


harges in the representative spa
e are always pointlike in the metri
 sense

too. To 
he
k for the spheri
al symmetry in an in�nitesimal neighbourhood

of ea
h 
harge, we need evaluating the interval ds, expressed by (4.5), in an

in�nitesimal neighbourhood of ea
h of the points lo
ated at r = 0, z = z

i

;

i = 1; 2; 3. One �nds that, in the 
lose proximity to all the points of the

z-axis, the interval (4.5) 
an be approximated as

(4.25) ds

2

=

p

1 +K

2

�

�dr

2

� dz

2

� r

2

d'

2

+ dt

2

�

+

1

p

1 +K

2

(rd )

2

:

In the 
lose proximity of the three points mentioned above one 
an use the

further approximation

(4.26)

1

p

1 +K

2

(rd )

2

=

K

2

p

1 +K

2

[(z � z

i

)dr � rdz℄

2

r

2

+ (z � z

i

)

2

:

Therefore, by performing severally, in the meridian planes, the 
oordinate

transformations

(4.27) r = R sin#; z � z

i

= R 
os#;

for i = 1; 2 and 3, one will �nd that in ea
h in�nitesimal neighbourhood

the interval will always take the same form, given by (4.18), i.e. the very

form that holds in the whole spa
e for the solution with n = 1. As a


onsequen
e, if one performs the transformation and �xation of the manifold

(4.19) also in this 
ase with n = 3, de�ned by (4.23), one �nds that the

interval is spheri
ally symmetri
 in the in�nitesimal neighbourhood of ea
h

of the pointlike magneti
 
harges.

The geometri
al 
onditions on the metri
 �eld surrounding the 
harges,

whose ful�llment

1

, in the ele
trostati
 solution of Se
tion 3, ensures that

Coulomb's law is an out
ome of the theory, in the parti
ular solution 
on-

sidered here are always satis�ed exa
tly, whatever the mutual positions of

the three magneti
 
harges may be, provided that the order z

1

< z

2

< z

3

is

respe
ted. One therefore draws the physi
al 
on
lusion that these aligned

magneti
 
harges by no means behave like magneti
 monopoles would do,

if they were allowed for, in Maxwell's ele
tromagnetism. The indi�erent

1

although with the approximation expounded in [23℄.
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equilibrium of the three 
harges exhibited by this magnetostati
 solution

of the Hermitian theory is only possible if the intera
tion of the 
harges is

independent of their mutual distan
es.

One 
an obje
t to this 
on
lusion, be
ause the fa
t that the 
harges are

both pointlike in the metri
al sense, and ea
h endowed with a spheri
ally

symmetri
 in�nitesimal neighbourhood for whatever 
hoi
e of z

1

< z

2

< z

3

,

might well mean that these 
harges are not intera
ting at all. But, as soon as

the 
onditions (4.23) for K

i

are not respe
ted, a deviation from elementary


atness appears on stret
hes of the z-axis, that 
an not be made to disappear

through the 
hoi
e of the manifold, just like it o

urs in the solution with

n = 2, and also in the two-body, stati
 solutions of the general relativity

of 1915. Moreover, approximate 
al
ulations done by Treder already [28℄ in

1957 both by the EIH method [29, 22℄ and by the test-parti
le method [30℄

of Papapetrou revealed the existen
e, in this gravito-ele
tromagnetism, of

a 
entral for
e between the poles built with K

ikl

, that does not depend on

their mutual distan
e, and that, in the Hermitian theory, is attra
tive when

the poles have 
harges of opposite sign.

The same 
on
lusion 
an be drawn also with an argument that relies on

another exa
t solution [32℄ belonging to the 
lass des
ribed in [19℄. The

solution is a Hermitian generalization of the Curzon metri
 [33℄. In the


ylindri
al 
oordinates of its representative spa
e two Curzon masses, lo-


ated at r = 0, z = z

1

and r = 0, z = z

2

respe
tively, are endowed with

point magneti
 
harges. For �xed z

1

and z

2

, by 
hoosing appropriately the

values of the 
onstants asso
iated with both the masses and the 
harges,

one su

eeds in obtaining that no deviation from elementary 
atness o

ur

along the whole z-axis. One interprets this 
ir
umstan
e as showing that

the gravitational for
e between the masses is balan
ed by the for
e that the

magneti
 
harges exert on ea
h other. From the weak �eld limit of this exa
t

solution, when the gravitational pull redu
es to the Newtonian behaviour,

one 
on
ludes too that the for
e between the magneti
 
harges is attra
tive

when the 
harges have opposite sign, and that it does not depend on their

mutual distan
e

2

. In 1980 Treder interpreted [31℄ his �ndings of 1957 in a


hromodynami
 sense.

5. Con
lusion

Talking of 
on
lusions, here and now, sounds ironi
ally premature. We

are still at the very beginnings, sin
e the theory represents su
h a total

departure from the known paths. Considering g

[ik℄

and R

[ik℄

as ele
tromag-

neti
 indu
tions and �elds, like S
hr�odinger �rst [5℄ envisaged sixty years

ago, leads to a gravito-ele
tromagnetism endowed with a range of possibili-

ties so wide and unexplored, thanks to the intri
ated di�erential 
onstitutive

2

In the mentioned paper [32℄, the deviation from the elementary 
atness was 
al
ulated

by availing of g

(ik)

as metri
. The 
al
ulation was repeated with the right metri
 s

ik

, and

has provided just the same result.
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relation linking these quantities, that one might well despair that its 
ontent

will ever be unraveled, and proved to be physi
ally meaningful or not. And

yet, thanks to approximate and to exa
t �ndings, some glimpses about the

possible 
ontent of the theory have appeared during the lapse of the de
ades.

Besides, of 
ourse, Einstein's gravitation of 1915, the theory appears to 
on-

tain, a

ording to parti
ular exa
t solutions, ele
tri
 
harges that behave

as pres
ribed by Coulomb's ele
trostati
s [23℄, as well as magneti
 poles

that intera
t with for
es not depending on their mutual distan
e. When


onfronted with su
h out
omes, one 
an not help remembering the hopes

expressed by S
hr�odinger in the paper quoted above:

\We may, I think, hold out the prospe
t, that those skew

�elds together, whatever may emerge as the appropriate in-

terpretation, embra
e both the ele
tromagneti
 and the nu-


lear �eld and their interplay with ea
h other and with grav-

itation."

and dare suggesting, on the basis of the admittedly s
ant, but unambiguous

eviden
e gathered until now, that the work on this theory, abandoned so

many de
ades ago, be resumed in the years to 
ome.
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