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It is the intention of this lecture to recall the close connection between elementary geometry and
elementary mechanics. This connection is an interdisciplinary tool to visualize aspects of both subjects
that remain abstract (i.e. not mapped onto everyday experience) otherwise. The key to this connection
is projective geometry. Geometry is experienced in mechanics (and physics in general), and mechanics
defines the geometry of space and time. It is relativity theory that is of particular public interest. Its
curious statements about space and time encourage many people to think about and to map them
onto the experience they have. In trying to pin down the arguments you have to draw, i.e., you have
to use the geometry of the space and time. Most of us heard about the twin paradox, and most of
us know that it represents only the unconventional triangle inequality of pseudoeuclidean space. The
statement that relativity theory is the geometry of space-time is commonplace, but synthetic treatments
of this geometry are rare (my knowledge about the mathematical literature is incomplete, so I cite only
[2, 3, 6, 8, 15, 16, 18, 17, 19, 20]. However, I am sure that in the literature for physics, in particular
relativity, there is no textbook that really shows Minkowski geometry in its synthetic form. Most of the
books about relativity sketch the problems a bit helpless in space, not in space-time. Apparently, the
development of analytic and algebraic methods that required all the attention of the physics community
all the twentieth century covered the synthetic aspect with the attribute of being old and slow and of no
use at all, a Glass Bead Game.

I intend to remind you, that
. space-time diagrams are in fact commonplace
. mechanics require space-time constructions, not simply diagrams
. space-time constructions allow to explicitely show the relation between mechanics and geometry
. space-time constructions explain geometric arguments simpler than the euclidean plane
. space-time constructions show the necessity and use of abstract geometric formulation on the level of
school geometry.
6. the common descendance of euclidean and pseudoeuclidean geometry from the projective one leads to
deeper questions of physics.
7. plane geometry can feature the universe.
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Space-time diagrams are commonplace as paper registrations of time-dependent quantities in medi-
cine, seismology, meteorology. The place of ink needle is recorded, that mostly translates fluctuations or
oscillations about some mean value. The evaluation mostly hides the geometric aspect in the algorithmic
apparatus. However, these registrations yield the opportunity to envisage the registration of unidimen-
sional motion, and now we are inmidst of elementary mechanics (Movie 1).

Uniform motion leaves a straight line. We may understand, that being straight does not depend
on the factual uniformity of the registration: A line is straight if it is element of a congruence of lines
where two lines intersect at most once, and two points determine a unique line. These properties are
not hampered when the registration itself is not uniform. We may understand, that the uniformity of
registration is controlled by the congruence. Its coordinates must describe the congruence with linear



relations. Newtons first law states, that the world-lines of free motion form a set of straight lines in space-
time, that defines in its turn linear reference frames, the inertial frames. An unusual, but important
example are the world-lines of the vertical throw (Movie 2). Our euclidean habit shows us parabolas,
but these parabolas constitute (through their intersection properties) a set of straight lines. We get the
conventional linear picture through referring the spatial distance to one of the parabolas: This is the
inertial reference to a freely falling observer.

Euclidean geometry has no place on the registration strip. No euclidean circle has any counterpart in
the registration of physical motion. What curve on the registration strip plays the role of the circle on
the euclidean plane? We find (in the case of force-free motions) only straight lines between collisions or
reflections.

Reflection is the keyword. We learn at school with astonishment, that translations and rotations can
be generated through reflections only. The depth of this statement cannot be understood at school, where
we are happy to construct reflections with the help of the circle, and where we have no access to the
reflection without the notion of rotation. The exception, of course, is the toilet mirror (Movie 3). In space-
time, however, we primarily have the reflection, and can infer the circle as the locus of equal distances to
some centre.

We start with the ordinary mechanical reflection that inverts the relative velocity without changing
its modulus (Movie 4), used by Amélie Mauresmo, for instance. The reflected image of an event is a
simultaneous event at equal but opposite spatial distance from the mirror (Movie 5). The circle about
an event on the world-line of the mirror is the connecting line: how strange! The distance between two
events is the difference in time, not in space: how strange! The angle between two straight world-lines
is the relative velocity: Velocities are composed additively: this is well-known terrain at last. This is the
Galilei geometry [8].

However, additive composition of velocities is only an approzimation to the real world around us:
the velocity of light is not changed in composition with other velocities. We have to leave the mechanics
argument for constructing reflection and pass to the simpler costruction with waves (Movie 6). This kind
of reflection replaces the euclidean rectangular involution on the line at infinity that has no real fixed
points with a rectangular involution that has two real fixed points: the carrier of the congruences of world
lines of light propagation. Reflections are now linear constructions and do mot require the use of any
second-order curve. We can see now that the reduction of translations and rotations to reflections makes
things not only simpler, but accessible.
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circle laterals ski circle of Pythagoras

The euclidean circle is replaced with a curve that our euclidean interpretation is a hyperbola (Movie
7). The theorem of Pythagoras yields the famous indefinite signature of the metric (Movie 8). Many
of the euclidean strategies of proof (in fact, the strategies that can be reduced to the projective-metric
connection) work in a completely analogous way (Movie 9). A curious fact is that distances on lightlike
lines vanish: Photons do not age (Movie 10). The composition of relative velocities is the catenation rule
for cross ratios (Figure 11).

Cross ratios are the next keyword. Cross ratios as measure — this reminds us that the general case
of induction of metric relations in the plane is the definition of an absolute conic. The distance between
two points is given through the cross ratio of the pair with the two intersection point of the connecting
line with the absolute conic. Angles are defined through the cross ratio with the two tangent lines to
the absolute conic. We so entered the realm of Cayley-Klein geometries, and of the Klein model of non-



euclidean geometry in particular. It is the part of the plane outside the conic, where all basic constructive
elements are real. Timelike lines intersect the conic in two real points, and from the intersection of two
timelike lines, two real tangents to the conic exist. The cross ratios can be found without referring to
non-real points and lines (Movie 12). Angles between lines that intersect on the conic vanish (these are
parallels in the conventional sense) just as distances on lines tangent to the conic vanish: these are the
lightlike lines in Minkowski geometry. The part of the plane outside the absolute conic (beyond the infinity
of the non-euclidean geometry) is the two-dimensional model of the deSitter universe locally (Figures 13
and 14).

Figure 9: The Feuer-
bach circle in Minkow-
ski g.

A typical problem to show the use of geometric constructions in space-time is the Fresnel paradox.
Fresnel discovered that wave-fronts (in the frame of absolute simultanieity) do not show aberration, while
particle motion does. The construction shows without any arithmetics that the solution of the paradox
requires relativity of simultaneity, i.e. Minkowski geometry for space-time (Figures 15 and 16).

Movie 10: Zero distan- Figure 11: Cross ratios Movie 12: Zero angles
ces on lightlike lines and velocities for prarallel lines
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Metric properties are induced by the definition of an absolute conic. Is this conic (generally quadric
in a fourdimensional space-time) an object of physics? Is the observed metricity to be reduced to an
object that has to be explained by dynamics? The point of view of projective geometry leads to a far
deeper and unsolved question about the physical origin and reason for the metrisation of space-time. The
measure of physics is given by action integrals. Action principles rule mechanics and field theory as well.
Action principles rule the state and the motion of our rulers and our clocks. The metric properties of
space-time should descend from the action principles. The existence of simple metric properties should
depend on the ideal state of the universe [5, 12, 21]. We do not proceed like this for the moment. We
always start by assuming the existence of a space-time metric with a structure independent of the physical
state of the universe. General relativity provides only the changes of this metric from point to point, not
its existence, and not its signature. We form action principles only with these geometric premises: no
surprise that dynamics fits with this supposition. However, the question where the metric property of
space-time comes from cannot be asked. Nontheless, I hope one can understand eventually whether one
can establish a connection between the measure of dynamics with the measure of space and time without
supposing the latter beforehand. But this is another topic, and another lecture.

For this time, I restrict myself to the projective-metric connection, and I thank you four your attention.
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