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THE TOPOLOGY OF SCHWARZSCHILD’S SOLUTION

AND THE KRUSKAL METRIC

SALVATORE ANTOCI AND DIERCK-EKKEHARD LIEBSCHER

Abstract. Kruskal’s extension solves the problem of the arrow of time
of the “Schwarzschild solution” through combining two Hilbert mani-
folds by a singular coordinate transformation. We discuss the implica-
tions for the singularity problem and the definition of the mass point.

The analogy set by Rindler between the Kruskal metric and the
Minkowski spacetime is investigated anew. The question is answered,
whether this analogy is limited to a similarity of the chosen “Bildräume”,
or can be given a deeper, intrinsic meaning. The conclusion is reached by
observing a usually neglected difference: the left and right quadrants of
Kruskal’s metric are endowed with worldlines of absolute rest, uniquely
defined through each event by the manifold itself, while such worldlines
obviously do not exist in the Minkowski spacetime.

1. Introduction: Kruskal’s extension of the Schwarzschild

solution and the arrow of time

In general, a manifold cannot be covered by a single coordinate system.
An atlas of coordinate systems is required, and it reflects the global prop-
erties of the manifold. An individual coordinate system can be limited by
its singularities, that may be seen as singularities in the metric topology
with respect to the coordinate-based topology. Coordinates, however, do
not matter. Any determination of position or time is ruled by equations of
motion or structure that are invariant against substitutions of new coordi-
nates for the old. Hence, a singularity which is physically observable must
have an expression in invariant quantities.

In a Riemannian manifold, all tensors that can be constructed from the
metric tensor and its derivatives are the concomitants of the Riemann tensor.
For a general manifold, the invariants of the Riemann tensor define singu-
larities. When these invariants are non-singular, the singularities that limit
the viability of a coordinate system are not observable – this is the folklore.
It holds, however, only for a non-degenerate metric. The “Schwarzschild
metric”1 shows that in algebraically special metrics, where Killing vectors

Key words and phrases. General relativity - Kruskal metric - Rindler spacetime -
Schwarzschild solution.

1Due to compelling historical reasons, made clear [1] in an Editorial Note recently
appeared in General Relativity and Gravitation, and accompanying an English translation
of Schwarzschild’s fundamental paper, we shall henceforth call Schwarzschild solution,
without quotation marks, the original “Massenpunkt” solution that Karl Schwarzschild
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are invariantly defined, singularities can now exist in the Killing congruences
also in the case of non-singular curvature invariants. In the “Schwarzschild
metric”, it is the transition of character of the Killing congruence from
time-like to space-like that yields a singularity in the acceleration: with
ξk = [0, 0, 0, 1] and ξi;k + ξk;i = 0, we obtain

(1.1) ξi;kξ
k +

1

2
(ξkξ

k),i = 0 ,

and for ui = ξi√
glmξlξm

,

(1.2) ui;ku
k +

1

2
(ln ξkξ

k),i = 0 .

The invariant square of the acceleration is found to be

(1.3) aiakg
ik =

1

2
(ln ξmξ

m),i
1

2
(ln ξnξ

n),kg
ik =

1

4
g′44g

′

44g
11(g44)2,

where the prime denotes derivation with respect to r in, say, Hilbert’s co-
ordinates. We find a singularity at the horizon not in curvature but in
the Killing congruence. It coincides with the change in character, and it
is measurable through the acceleration necessary to keep a massive body
stationary at a given position.

Beyond the Schwarzschild horizon, there is no observation for an observer
with a minimum distance from the horizon. Any object falling onto the
horizon will not reach it in finite observer time. The proper time of the
object, however, is finite, and the question of extending the manifold beyond
the horizon is posed. This extension cannot be achieved when the Killing
time is used as time coordinate. The Killing time is not timelike at all
“inside” the horizon: its vector is there spacelike. This circumstance entails
a confirmation of the argument, advanced by Marcel Brillouin [6] already in
1923, and reported in the Appendix, about a mismatch between the inner
and the outer problem. As remarked by Rindler [7, 8], if the inner part of
Hilbert’s solution is accepted as physical, due to the exchange of rôle that the
radial coordinate and the time coordinate undergo at Schwarzschild’s two-
surface, there is no way of drawing the arrows of time both inside and outside
in a way exempt from contradiction. A simple glance to Fig. 1 (a), reported
also by Rindler in his articles and books [7, 8], suffices for gathering that
we are confronted with a contradiction. Moreover, it is not a contradiction
associated with a particular choice of the coordinates. In fact, it is a flaw
inherent in the geometric structure of the manifold inadvertently chosen by
Hilbert, a flaw that no one-to-one coordinate transformation can remove, no
matter whether it is regular or not in the sense of Hilbert and Lichnerowicz
[4, 9]. This conclusion could have been sufficient for discarding Hilbert’s

published [2] in 1916, while the noun “Schwarzschild solution”, or Hilbert solution, is
reserved to the metric manifold, inequivalent to Schwarzschild’s original one, later provided
by Droste, Hilbert, Weyl [3, 4, 5] and attributed to Schwarzschild by these authors, as
well as by nearly all the subsequent writers of relativity.
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Figure 1. (a): r, t representation of Hilbert’s manifold.
Light cones and time’s arrows are drawn, showing that the
manifold cannot be endowed with a consistent direction of
time. (b): a cut is made in Hilbert’s manifold, thus allowing
for a consistent choice of the time’s arrows.

solution, with the inherent puzzle of the two singularities at r = 0 and
at r = 2m, and for adhering to the solution that Karl Schwarzschild had
originally proposed.

Coordinates do not matter – locally. The postulate that they shall not
matter globally means calling manifolds of different (defined by the coordi-
nates) topology equivalent. This is not a necessary definition of equivalence
classes. When one includes the (defined by the coordinates) topology as
characteristic of the manifold, only regular (with regular and non-vanishing
Jacobi determinant) coordinate transformations relate equivalent manifolds.
A part of the coordinate singularities become real, in particular the zeros
of the determinant of the metric tensor. These have been considered in the
early sixties [10, 11, 12].

The ingenuity of the relativists, as is well known, took instead a quite
different route.

2. Cutting and pasting two Hilbert manifolds

The flaw of the Hilbert manifold might be cured if it were possible to
cut its inner region as is shown in Fig. 1 (b), since then the two disjoint
inner parts can be endowed with opposite time arrows, thus restoring the
overall coherence in the direction of time. Of course, after the cut we no
longer have to do with Hilbert’s manifold, but with a new manifold, whose
topological properties and physical interpretation are different from those
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prevailing in the previous one. Moreover, the cut introduces an artificial
border without any physical raison d’être, imposed merely by the need to
solve a contradiction. In order to heal the wound inferted to Hilbert’s man-
ifold, by following Synge’s original idea [13], one decade later Kruskal and
Szekeres [14, 15] chose to effect the following audacious act of surgery: paste
together two Hilbert manifolds, both affected by the same fatal illness, after
suitably cutting them. One is depicted in Fig. 1 (b); the second one is its
mirror image in the r, t plane, left to the imagination of the reader. Then
the upper border of the cut in Fig. 1 (b) is sewn to the upper border of the
cut in the mirror image manifold, and likewise for the lower borders. This
way the cuts are sutured, and one gladly recognises that, after the surgery,
the circulation of the arrows of time is exempt from contradiction. There
is, however, a negative consequence of the surgical act: it is the impairment
of the independence of the individual manifolds, with a future singularity
permanently sewn to its past counterpart. One may well ask: the Kruskal
extension, is it the solution for the field of a mass point? It is, of course,
when we consider only one of the regions outside the horizon. It is difficult
to swallow that the inner part should be considered as the field of a particle:
the extension converts the problem of the “inner” time arrow into the para-
dox of the dissolution of the particle into an initial and a final singularity
with vacuum in the time between.

3. The analogy between the Kruskal metric and the

Minkowski spacetime

The Kruskal manifold was soon noted for its considerable mathemati-
cal beauty, but looked very remote, from a physical standpoint, from the
“Schwarzschild solution” and from the problem that the latter had tried to
solve, after the original solution given by Schwarzschild [2] had been dis-
carded. Since, due to the contradiction of the arrows of time, Hilbert’s
solution was useless, only the Kruskal solution seemed available for pro-
viding, within the theory of general relativity, a metric that could be the
counterpart of the field of a point particle in Newtonian physics, but many
a relativist, like Rindler, felt necessary to show that the complexity of the
Kruskal manifold could be reduced to something simpler, and more famil-
iar to the physicists, although of course not as simple and familiar as the
gravitational field of a point particle in Newton’s theory.

First came an attempt [16] at eliminating the strange duplication present
in the Kruskal-Szekeres metric, by identifying the pair of events (u, v, ϑ, ϕ)
and (−u,−v, ϑ, ϕ) in Kruskal’s diagram, drawn in Fig. 2. This attempt
was however unsuccessful, due to the singularity that such an identification
produces on the two-sphere u = v = 0, and to the ambiguity that this move
introduces in the direction of time. Then Rindler’s attention was drawn to
the analogy that he had already brought to light five years earlier, when
dealing with the definition of motion with a constant acceleration in curved
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spacetime [17]. Let ui be the four-velocity of a test particle in a pseudo
Riemannian manifold, whose affine connection is Γikl. Then the absolute
derivative of the four-velocity

(3.1) ai ≡
dui

ds
+ Γiklu

kul

defines the first curvature of the world-line of the particle, i.e. its four-
acceleration [18]. Let the “Schwarzschild metric” be written in terms of
Hilbert’s spherical polar coordinates r, ϑ, ϕ, t, like in footnote 4. It is
an easy matter to verify [17], that, in keeping with Einstein’s principle of
equivalence, a test particle in “Schwarzschild” exterior metric, whose spatial

v t

u x

,

,

Figure 2. In this figure the “Bildraum” for the Kruskal
manifold and a spacetime section of the Minkowski metric
are juxtaposed. The coordinate axes are endowed both with
Kruskal’s u, v coordinate labels, and with the x, t coordinates
of the Minkowski reference system. Therefore to each point
in the u, v “Bildraum” is associated a two-sphere of appro-
priate curvature radius, while to each point in the x, t rep-
resentative space is associated a y, z plane of the Minkowski
spacetime.

coordinates r, ϑ, ϕ are kept constant, is subject to a radially directed four-
acceleration, whose norm

(3.2) α = (−aia
i)1/2 =

1

r3/2(r − 2m)1/2
,

defined through equation (1.3), is constant. Let us now consider the x, t
plane of Minkowski spacetime, drawn too in Fig. 2, and calculate the four-
acceleration of a test particle executing a hyperbolic motion [17] in, say,
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either the left or the right quadrant of that plane. Its equation of motion
shall read

(3.3) x2 − t2 = X2,

where the constant X measures the minimum distance from the origin, at-
tained by the test particle when t = 0, and the norm of the four-acceleration
of the test particle is now

(3.4) α =
1

X
.

Rindler noticed [7, 8] that the particle with constant spatial coordinates in
the “Schwarzschild solution”, when viewed in the u, v “Bildraum”, appears
to execute a hyperbolic motion too, provided that the Minkowski metric be
substituted for the Kruskal metric in either the left or the right quadrant
of the Kruskal manifold. On this initial basis he constructed an articulated
argument ad analogiam for gaining an understanding of the Kruskal metric
through the undisputable understanding of the Rindler metric, which is
merely a matter of special relativity.

4. About using arguments ad analogiam in the theory of general

relativity

A “neo Cartesian”, meant in the jokeful sense that Synge once attributed
to the noun [19], may well wonder what is the rôle of arguments ad analogiam

in the theory of general relativity. One cannot in fact forget that, when
Hilbert succeeded [20] in formulating the field equations of the theory from
an action principle, he ended the Communication with which he announced
his achievement by expressing the hope that

damit die Möglichkeit naherückt, daß aus der Physik im
Prinzip eine Wissenschaft von der Art der Geometrie werde:
gewiß der herrlichste Ruhm der axiomatischen Methode, die
hier wie wir sehen die mächtigen Instrumente der Analysis,
nämlich Variationsrechnung und Invariantentheorie, in ihre
Dienste nimmt. 2

When Weyl and Levi-Civita obtained [5, 21] the reduction to quadratures
for the solution of the vacuum field equations of general relativity in the
case of a static, axially symmetric manifold, they did so by availing of the
so called “canonical coordinates”. Let x0 = t be the time coordinate, while
x1 = z, x2 = r are the coordinates in a meridian half-plane, and x3 = ϕ is
the azimuth of such a half-plane; then the line element of a static, axially
symmetric field in vacuo can be written as:

(4.1) ds2 = e2ψdt2 − dσ2, e2ψdσ2 = r2dϕ2 + e2γ(dr2 + dz2);

2An English translation:“hence the possibility gets close, that from physics originate,
in principle, a science of the kind of geometry: certainly the most splendid glory of the
axiomatic method, that here, as we see, takes to its service the powerful instruments of
analysis, i.e. calculus of variations and theory of invariants.”
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the two functions ψ and γ depend only on z and r. Remarkably enough, in
the “Bildraum” introduced by Weyl ψ fulfils the potential equation

(4.2) ∆ψ =
1

r

{

∂(rψz)

∂z
+
∂(rψr)

∂r

}

= 0

(ψz, ψr are the derivatives with respect to z and to r respectively), while γ
is obtained by solving the system

(4.3) γz = 2rψzψr, γr = r(ψ2
r − ψ2

z);

due to the potential equation (4.2)

(4.4) dγ = 2rψzψrdz + r(ψ2
r − ψ2

z)dr

happens to be an exact differential.
The analogy of equation (4.2) with the corresponding equation in New-

ton’s theory was indeed impressive, and mathematically helpful. Neither
Weyl nor Levi-Civita, however, thought of availing of this analogy for gain-
ing some insight in the physical meaning of the solutions. They knew in fact
that, when Schwarzschild’s solution [2] is rewritten by using Weyl’s canon-
ical coordinates, the “source” for the “Newtonian potential” ψ, that then
happens to appear at the right-hand side of equation (4.2), looks like one
segment of the z-axis covered by matter with a constant linear mass density.
But they also knew that this alluring analogy produced in the “Bildraum”
is deceitful. As noticed by Weyl, the intrinsic form of the “source” is a
completely different one: the segment covered by mass happens in fact to
be Schwarzschild’s two-surface.

5. Intrinsic viewpoint. The absolute statics of general

relativity

Given the illusory character of the “Bildraum” analogy in the case of
the solutions of Weyl and Levi-Civita, one shall verify whether the “Bild-
raum” analogy between the Kruskal metric and Minkowski spacetime has
some intrinsic content too, that can be expressed in invariant way. We find
in Rindler [7] the assertion that “the Kruskal diagram possesses essentially
the same invariance properties as the Minkowski diagram”. We shall ask
whether this claim about a possibly deceitful correspondence between “Bild-
raum” invariance properties is really meaningful, i.e. whether it can be
turned into a like claim about intrinsic invariance properties shared by the
manifolds.

We have already noticed that while each u, v point in Fig. 2 actually
corresponds to a two-sphere, each x, t point on the same figure corresponds
to an x, y plane in Minkowski spacetime. When m → 0, both the original
Hilbert manifold of Fig. 1 (a) and the manifold with a cut of Fig. 1 (b)
tend to the Minkowski spacetime. Kruskal’s manifold is obtained by sewing
together, in the way described in Sec. 2, the cuts of two manifolds like the
one in Fig. 1 (b). Hence, in the limit of vanishing mass, Kruskal’s manifold
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happens to be constituted by two Minkowski spacetimes, joined at the event
r = t = 0. Therefore, already in the limit m → 0, Kruskal’s manifold is
topologically different from the Minkowski manifold.

An analogy of intrinsic character seems promised by the following fact.
A test particle executing hyperbolic motion in either the left or the right
quadrant of the u, v “Bildraum”, and a test particle executing for good a
hyperbolic motion in Minkowski spacetime, in particular along the world
lines drawn in the x, t plane of Fig. 2, both execute a motion whose four-
acceleration is constant in direction and in norm, as shown by Eqs. (3.2)
and (3.4) respectively. Are these particular motions an intrinsic, common
feature of both the Kruskal and the Minkowski manifold?

In the Kruskal manifold, these motions occur in quadrants that are static
in character, if one accepts the usual definition of “static”. Let Greek indices
run from 1 to 3. According to the usual definition, a region of a manifold is
static if a coordinate system can be chosen for it, in which the square of the
interval can be written in the form

(5.1) ds2 = g44dt
2 + gµνdx

µdxν ,

and the nonvanishing components of the metric do not depend on the time-
like coordinate t. According to this definition, both the left and right
Kruskal quadrants and the Minkowski spacetime are static; this fact appears
to strengthen the analogy between the motions with constant acceleration
occurring in these manifolds.

The attribution of the adjective “static” to the Minkowski manifold and
to the Minkowski metric does not seem however to be an entirely convincing
one. In fact, the notion of staticity is indisputably connected with the notion
of rest. How is it possible to call “static” the metric of the theory of special
relativity, a theory that denies intrinsic meaning to the very notion of rest?
How is it possible that the Minkowski metric remain static, as it does ac-
cording to our definition, after we have subjected it to an arbitrary Lorentz
transformation, i.e. a transformation that entails relative, uniform motion?
Let us start from the Minkowski metric, given by gik = diag(−1,−1,−1, 1)
with respect to the Galilean coordinates x, y, z, t, and perform the coordi-
nate transformation

(5.2) x = X coshT, y = Y, z = Z, t = X sinhT

to new coordinates X, Y , Z, T . We get the particular Rindler metric [22],
whose interval reads

(5.3) ds2 = −dX2 − dY 2 − dZ2 +X2dT 2.

How is it possible that this metric turn out to be in static form too, despite
the fact that the transformation (5.2) entails uniformly accelerated motion?
There is however another definition of static manifold and metric, that, al-
though equivalent to the one given previously, is more helpful for solving our
difficulty, because it is expressed in intrinsic language. It says that a metric
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is static if it allows for a timelike Killing field ξi that is also hypersurface
orthogonal, i.e. fulfils both the equations

(5.4) ξi;k + ξk;i = 0,

and

(5.5) ξ[iξk,l] = 0.

Both the Kruskal metric in the left and right quadrants and the Minkowski
metric possess timelike Killing fields that obey both equations (5.4) and
(5.5). There is however a fundamental difference between the two cases,
whose importance has been somewhat neglected until now. In the case of
the Minkowski metric, at a given event there is an infinity of timelike Killing
vectors that fulfil both equations (5.4) and (5.5), and this circumstance
answers our previous questions, since it says in intrinsic language that there
is no privileged time axis, hence no privileged rest frame in the manifold of
special relativity.

On the contrary, in the case of the left and right quadrants of the Kruskal
metric, when m > 0 the timelike vector that obeys both equations (5.4) and
(5.5) is unique: at any event in the left and right quadrants of the Kruskal
manifold the metric itself provides a unique, absolute time direction; this
circumstance allows one to draw through any event a unique worldline of
absolute rest, that is intrinsic to the manifold. Hence, a worldline in the
Hilbert manifold for which r > 2m, ϑ and ϕ have constant values is an
intrinsic worldline of absolute rest.

¿From this result it follows that the norm of the four-acceleration ai of a
test particle on one of these worldlines, given by (3.2), is an invariant and
intrinsic property of the Hilbert and of the Kruskal manifolds. In fact, this
scalar is a unique outcome of equations (5.4), (5.5) and (3.2). We calculate
it by availing only of the metric, without making any arbitrary choice. This
scalar happens to diverge when r → 2m, as shown by equation (3.2). Due to
the way kept in calculating the norm (3.2), its divergence for r → 2m is as
intrinsic to the Hilbert and Kruskal manifolds [23, 24] as the divergence, for
r → 0, of the scalars built with the Riemann tensor and with its covariant
derivatives.

Also the norm (3.4) of the four-acceleration of a test particle executing
a hyperbolic motion in the Minkowski manifold, i.e. staying on a worldline
with constant values ofX, Y , Z in the particular form (5.3) of Rindler’s met-
ric, diverges when X → 0. This divergent behaviour is however completely
different in nature from the one occurring in the Kruskal and Hilbert mani-
folds for r → 2m. In fact, the scalar (3.4) is by no means uniquely dictated
by the metric: in the Minkowski manifold there is an infinity of worldlines of
hyperbolic motion through a given event; choosing one of them is completely
arbitrary, and such is also, from an intrinsic viewpoint, the definition of the
divergent scalar.
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6. Appendix: Historical note

When, by further elaborating the geometric interpretation of the gravi-
tational field of a particle envisaged by Synge [13] in 1950, ten years later
Kruskal [14] and Szekeres [15] succeeded in convincing an influential minor-
ity within the relativists that a major breakthrough had been achieved in
the mathematical understanding of the “Schwarzschild solution”, a major
problem became soon apparent too: convincing that community that a ma-
jor breakthrough had been achieved also in the physical understanding. This
was by no means an easy task: the possibility that the Kruskal extension
might represent such an achievement was e.g. simply dismissed in 1962 by
Dirac [25] with a polite touch of nonchalant irony. He noticed:

The mathematicians can go beyond this Schwarzschild ra-
dius, and get inside, but I would maintain that this inside
region is not physical space, because to send a signal inside
and get it out again would take an infinite time, so I feel that
the space inside the Schwarzschild radius must belong to a
different universe and should not be taken into account in
any physical theory.

Dirac’s opinion had already been reached [6] four decades earlier by Marcel
Brillouin, although by availing of a different argument. In 1923, after pon-
dering for months the problem of the “catastrophe Hadamard” occurring
at Schwarzschild’s singular surface, that had been raised during the discus-
sions between Einstein and the French scientists gathered at the “Collège
de France” during the Easter of 1922, Brillouin eventually wrote [6]:

On peut se demander si cette singularité 3 limite l’Univers,
et s’il faut s’arrèter a R = 0; ou si, au contraire, elle traverse

seulement l’Univers, qui continuerait au delà, pour R < 0.
Dans les discussions, en particulier, dans celles da Pàques
1922, au Collège de France, on a généralement parlé comme
si R = 0 caractérisait une region catastrophique qu’il faut
depasser pour arriver jusq’à la véritable limite singulière, at-
teinte seulement pour γ infini, avec R = −2m. A mon avis,

c’est la première singularité, atteinte R = 0, γ = 0 (m > 0),
qui limite l’Univers et qu’on ne doit pas dépasser. [C. R., t.
175 (27 nov. 1922)].

La raison en est péremptoire, quoiqu’on ait négligé de la
mettre en évidence jusqu’à présent: Pour R < 0, γ < 0,

3In Brillouin’s paper, the metric

ds
2 = γc

2dτ
2
−

1

γ
dR

2
− (R + 2m)2(dθ

2 + sin2
θdϕ

2), γ =
R

R + 2m

is given. c is the velocity of light, θ and ϕ are the usual spherical polar angles, R is the
radial coordinate. Brillouin’s pondered choice for the limit values of R (0 < R < ∞) puts
his metric in one to one correspondence with Schwarzschild’s original metric [2].
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le ds2 ne correspond plus de tout au problème qu’on voulait

traiter.

With hindsight, it must be recognised that Brillouin had given one good
reason for discarding Hilbert’s form of the spherically symmetric manifold
of a massive particle 4, with its troublesome inner region, 0 < r < 2m,
and for adopting instead the manifold that Schwarzschild had deliberately
decided to choose [2], when he first solved the “Massenpunkt” problem. The
issue, whether Schwarzschild’s two-surface is intrinsically singular or not,
and whether transformations of coordinates that cancel the “catastrophe
Hadamard” are allowed, despite the fact that they infringe the rules for the
regularity of coordinate transformations laid down by Hilbert [4] already in
1917, and sharpened by Lichnerowicz [9] in his book of 1955, is with us since
the very beginning of general relativity. It has been widely debated with
opposite outcomes, if it is true that during forty years since its discovery,
the overwhelming majority of relativists was convinced that the inner region
of Hilbert’s solution was unreachable from the outside, while during the
subsequent four decades an equally overwhelming majority harbored the
opposite conviction.

Brillouin’s argument, however, does not rely at all on the singular char-
acter of Schwarzschild’s two-surface. It simply says [6] that, because in the
inner region of Hilbert’s metric the radial coordinate and the time coordi-
nate exchange their rôles as spatial and temporal coordinate respectively, in
that region one is no longer considering the problem that one had set out
to solve.

4It was Leonard Abrams, in a keen paper [26] written in 1989, who first noticed that
the apparent necessity of the choice of the manifold done by Hilbert when he wrote [4]
the spherically symmetric solution in the form:

ds
2 =

(

1 −

2m

r

)

dt
2
−

(

1 −

2m

r

)

−1

dr
2
− r

2(dϑ
2 + sin2

ϑdϕ
2), 0 < r < ∞,

and handed it down to the posterity as the unique “Schwarzschild solution”, is just due
to an arbitrary restriction inadvertently imposed by Hilbert in his calculation.
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