ANISOTROPIC MASS, BI-METRIC THEORY, AND LORENTZ INVARIANCE

Dierck-E.Liebscher

Astrophysikalisches Institut Potsdam

http://kosmos.aip.de/~lie

13.2.1998

Anisotropic mass, bi-metric theory, and Lorentz invariance

• Bucket paradox:

Newton: Demonstrates the absolute space, Mach: Proof against absolute space.

- Inertial frame: Four free particles define the reference, all other free particles with straight world lines in this frame.
- No kinematics, no dynamics beyond this frame.
- Mach's Principle: Absolute space has to be eliminated.

Relational mechanics

- Restriction of the description to relative motion only. Galilei invariance is complemented by other invariances.
- Paradigm: point mechanics. Gravitational interaction already relational: only distances enter.
 - Schrödinger:

$$T=rac{1}{2}\sum_{A}m_{A}\dot{ec{r}}^{2}:=rac{1}{2}\sum_{A
eq B}rac{m_{A}m_{B}}{c^{2}r_{AB}}\dot{r}_{AB}^{2}$$

invariance with respect to the kinematical group of Euclidean space;

effective inertial masses anisotropic.

- Treder:

$$T=rac{1}{2}\sum\limits_{A}m_{A}\dot{ec{r}}^{2}:=rac{1}{2}\sum\limits_{A
eq B}rac{m_{A}m_{B}}{c^{2}r_{AB}}\dot{ec{r}}_{AB}^{2}$$

invariance with respect to the Galilei group extended by translational acceleration, not by rotation; effective inertial masses isotropic.

- Barbour:

$$T-V:=rac{\sqrt{\sum\limits_{A
eq B}rac{m_Am_B}{c^2r_{AB}}\dot{r}_{AB}^2}}{\sum\limits_{A
eq B}rac{m_Am_B}{r_{AB}}}$$

invariance with respect to the kinematical group of Euclidean space extended by time reparametrization; effective inertial masses anisotropic.

Configuration dependent physics

- The state of the universe defines physics, i.e., it is not completely explained by physics
- There are no complete dynamical laws for the universe: The universe may define time like ephemeris time

$$S = \int \sqrt{E_{
m kinetic}} {
m d}t^2 \sqrt{E - E_{
m potential}} \ {
m d}s_{
m kinetic}^2 = E_{
m kinetic} {
m d}t^2 \ {
m d}t = rac{{
m d}s_{
m kinetic}}{\sqrt{E - E_{
m potential}}}$$

• metric defined by kinetic energy: two metrics now.

Minimal relativity: bi-metric theory

- Every wave equation defines a metric
- Relativity: All these metrics are equal (g_{ik})
- Bi-metric theory: g_{ik} is defined in an η_{ik} background by gravitation, all other fields feel only g_{ik} .
- ullet Lamé coefficients $a^m_{\ i}$: $\eta_{mn} a^m_{\ i} a^n_{\ k} = g_{ik}$
- Homogeneous theories with quadratic Lagrangians admit 11 parity-conserving terms with 4 exponents
- in post-Newtonian approximation we obtain

$$rac{c_{
m light}^2}{c_{
m gravitation}^2}$$

as a combination of coeficients in the line element.

Relational bi-metric theory

$$S=\int \mathrm{d}t \, \left(T-V
ight) pprox S^* = m \int \mathrm{d}t \, \sqrt{1-2rac{1}{mc^2}(T-V)}$$

$$\Phi = rac{1}{c^2} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} \;, \quad \Phi_1 = rac{1}{c^4} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} \dot{ec r}_B^2 \;,
onumber \ Y_{\mu
u} = rac{1}{c^2} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} ec n_{1B\mu} ec n_{1B
u} \;, \quad \mathcal{A} = rac{1}{c^4} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} (ec n_{1B} \dot{ec r}_B)^2 \;,
onumber \ V_\mu = rac{1}{c^3} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} \dot{ec r}_H \;, \quad W_\mu = rac{1}{c^3} \sum_{B
eq 1} rac{Gm_B}{r_{1B}} (ec n_{1B} \dot{ec r}_B) ec n_{1B\mu} \;.$$

$$L = L_0 + L^* \; , \ L^* = \Phi \; + \; lpha ({\cal A} - 2W_\mu rac{\mathrm{d} x^\mu}{\mathrm{d} x^0} + Y_{\mu
u} rac{\mathrm{d} x^\mu}{\mathrm{d} x^0} rac{\mathrm{d} x^
u}{\mathrm{d} x^0}) \ + \; eta (\Phi_1 - 2V_\mu rac{\mathrm{d} x^\mu}{\mathrm{d} x^0} + \Phi \delta_{\mu
u} rac{\mathrm{d} x^\mu}{\mathrm{d} x^0} rac{\mathrm{d} x^
u}{\mathrm{d} x^0})$$

The effective metric

$$egin{aligned} arepsilon_{ik} &= egin{pmatrix} 1; \ 0; \ 0; \end{pmatrix} \ \gamma^W_{ik} &= egin{pmatrix} \mathcal{A}; \ -W_
u; \ Y_{\mu
u} \end{pmatrix} \ \gamma^R_{ik} &= egin{pmatrix} \Phi_1; \ -V_
u; \ \Phi\delta_{\mu
u} \end{pmatrix} \end{aligned}$$

$$\mathrm{d}s^2 = (f_1[\Phi]arepsilon_{ik} - f_2[\Phi]\gamma^W_{ik} - f_3[\Phi]\gamma^R_{ik})\mathrm{d}x^i\mathrm{d}x^k \;.$$

Special case:

$$f_1[\Phi] = 1 - 2\Phi \;,\;\; f_2[\Phi] = 2lpha \;,\;\; f_3[\Phi] = 2eta$$

Combination of factors in the line element:

$$rac{c_{ ext{light}}^2}{c_{ ext{gravitation}}^2} = ext{factor}[oldsymbol{\mathcal{A}}] + ext{factor}[oldsymbol{W}] + ext{factor}[oldsymbol{Y}] \ \stackrel{ ext{here}}{=} \ 0$$

A posteriori Lorentz invariance

- The action integral is a measure of the virtual motion.
- Any other measure should be derived form this integral.
- A classical measurement is a comparison of the dynamics of different subsystems, both part of the universe ruled by the action principle.
- Usually we construct the action integral in using a spacetime metric. The existence of this metric is known beforehand. Its values may constitute a field. This ends in General Relativity.
- Relational physics have to abandon the metric as a constructional element and gain its existence a posteriori as an approximation for local considerations.
- The construction of an action integral can abandon the notion of an a priori space-time metric, but not of a parallel transport in order to form covariant derivatives.
- Any parallel transport allows to construct a second-degree covariant tensor by the Schrödinger proposal

$$g_{ik} \propto R_{ik}$$
 .

If it is invertible, it may be used to construct the non-gravitational action. But

• it is not necessarily invertible, and it is strictly local. There is no configuration dependence as envisaged.