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Abstract

Machian mechanics is usually based on absolute time. Given an
absolute time, global rotation can be defined easily, and invariance
against global rotation (not only reorientation) can be implemented
simply by using only distances. However, absolute time suffers from
one important drawback, the basic lack of Lorentz invariance. Form
this point of view, the question of formally anisotropic mass that is
found in mechanics based on invariance with respect to the kinemat-
ical group of Euclidean space is of secondary importance. However,
the argument by Dicke that the anisotropy indicates a difference
between the basic Euclidean and an operational Riemannian met-
ric of space shows that one should try a bimetric scheme where the
background world is Galilean and where the superposed operational
metric of the world (for equations of motions as for field equations)
is that of an Einstein world. The implications of such a procedure
are reviewed.

1 Anisotropic mass

Relational mechanics is the common reference of most of the constructive approaches to
the Mach’s principle. In the action integral, the kinetic energy of Newtonian mechanics is
substituted by an expression which refers to relative positions or distances, and one obtains
invariance not only to the Galilei group but to some extension. For instance, the Riemann
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is invariant with respect to the Galilei transformations combined with translational acceler-

ations. The Weber potential,
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is invariant to the full kinematical group of Euclidean space as well as the Newton potential,
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It is an old story that small subsystems of point-mass clouds with Lagrangians of the type
[16, 17, 19, 13, 1, 2]
L=®+aV + (X, (1)



or L = v/X/® [3, 5] are subject to an effective Lagrangian which reproduces Newtonian
mechanics to the lowest order.

The inclusion of Weber’s potential produces formally anisotropic masses when the sur-
rounding cloud is not isotropic itself. This has been the subject of a longer debate, which
centers around Dicke’s argument [9] that the relation between velocity, momentum, and ki-
netic energy is the basic definition of the metric of space. That is, the length units in different
directions have to be chosen in such a way that the inertial masses are isotropic. Here we en-
ter the question about the definition of mass. In a Lagrangian of type (1), the masses my4 are
gravitational charges. The construction of the Lagrangian implicitly supposes the existence
of a spatial metric to form the distances. On the other hand, the distances are to be ob-
served only by evaluation of the motion of subsystems which are subject to the equations of
motion again. This seems to be far more intricate than the definition of a metric by collision
experiments which do not, to some extent, depend on the individual interactions in question.
Collision experiments determine the inertial mass, i.e. the factor between momentum and
velocity. The ensemble of tracks of a symmetric collision defines the metric of space (which
we denote for short as inertial metric because inertial masses are isotropic here). Although
this might not be a practicable way, for obtaining a fundamental definition it is sufficient.
In addition, it has the advantage to allow a relativistic generalization.

Through collision experiments, we defined the metric of space before considering any
interaction in detail. In mechanics, these interactions are mediated by forces. In the case of
gravitation, the distribution of charges defines a scalar field, the potential, and the force is
its gradient. It is now a question about the potential whether it is isotropic or not in a metric
that is defined by collisions. In a Lagrangian (1), now transformed to cartesian coordinates of
the inertial metric, the potential can be anisotropic. The gravitational potential of our galaxy,
®; ~ 1075, may serve as a reference value for the expected magnitude of observable effects.
As long as only gravitation enters the picture, we are to find them through observation of
celestial mechanics only [4].

The picture changes when non-gravitational interactions come to play. This already hap-
pens when we begin to measure with solid bodies. In considering secular and annual variations
of astronomical distances, sizes of orbits, and rotation or revolution periods, one already has
to take into account the effects on the constituent forces of the measuring devices. In partic-
ular, the applicability of solid bodies to measure the inertial metric depends on the isotropy
of the constituent forces. These forces are essentially non-gravitational, and the observation
that we find isotropy is an argument in favour of a concept in which these forces are subject
to equations which are constructed with the inertial metric. When we measure with light in
particular, the light propagation is isotropic in the same coordinates where inertial masses
are isotropic. Consequently, the inertial metric must be part of the constituent wave equa-
tion. When we consider a theory with a gravitational Lagrangian of the form (1), we have
to accept a bi-metric procedure.

2 Bi-metric theories based on relational mechanics

We consider now bi-metric theories. Gravitation is supposed to be the rule to construct an
pseudo-Riemannian effective metric, g;x. The dynamics of non-gravitational fields constitut-



ing matter is supposed to follow the usual paths in a pseudo-Riemannian geometry with this
metric, corresponding to what one may call weak equivalence principle. The construction of
the effective metric is to manifest some underlying relational mechanics [14].

First we pick out one particle and define the potentials
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They help us to write the one-particle Lagrangian (1) in the form

L = Lo+ L", (2)
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We obtain three relational space-time tensors, defined in the primary coordinates by
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The general relationally constructed space-time metric is given by

ds® = (f1[®lew — fol®]Viy — f3[®]yi)daida” . (3)

In the case of

[[@]=1-20, f[P] =22, f3[P] =20
we get a metric in which the geodesics are, in the slow-motion approximation, the solutions
to the Euler-Lagrange equations of the Lagrangian (2).

Up to this point, we used formal requirements for the construction of the effective metric,
the theory for the three free functions fi, fo, f3 is left open. Any construction that is in-
variant against the kinematical group of the Galilean background space-time will be of this
form. We understand it as covariant by requiring corresponding transformation properties in
coordinate substitutions. As for all genuine bi-metric theories, some coordinates are distin-
guished by the particular simple form which the metric of the background can take. In our
case, the background is Galilean: It defines an absolute time. As for all genuine bi-metric
theories, the background is observed right away in pure gravitational phenomena only, i.e. by
measurement of gravitational interaction. In our case, gravitation propagates with infinite
speed.



Even if we conservatively interpret the known observations as not containing any infor-
mation about the propagation velocity of gravitational waves, this infinite velocity inherent
in the construction is the decisive obstacle for our interpretation. Absolute time is hidden
already in the combination of the potentials A and W,. These two potentials enter with
opposite sign the components v}y and 7", respectively, and nowhere else. With this combi-
nation, the coefficient «y of the post-Newtonian approximation in the notation of Will and
Nordtvedt [20, 21] is equal to —1 always. Of course, we have to make various gauges in the
coordinates in order to obtain the ordinary circumstances considered in the post-Newtonian
approximation. We have first to separate a mass center in the cloud, second to gauge the
effective gravitational constant form the contribution of the remaining cloud, third to gauge
the origin into the mass center and so on. However, theses gauges can never produce terms
like A and W,. The potentials .4 and W, are of post-Newtonian order, so their relation never
changes. The coefficient as is the least known of the post-Newtonian coefficients. However,
its modulus is far smaller than 1 (ap &~ 1073 after [21]).

The coefficient s has a simple physical interpretation in the frame of bi-metric theories.
When we consider the metric to be a tensor field in some pseudo-Euclidean background
where we can vary the form and strength of its self-interaction as well as its propagation
velocity in relation to the light velocity defined by this tensor field [11], it turns out that we
obtain the relation )

Clight —lta.
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The fact that, in our construction, we obtain oy = —1 is intimately connected to the in-
stantaneous gravitational interaction inherent in the Lagrangian (1). Hence, it is out of
question that the existence of an absolute simultaneity cannot be hidden from an effectively
pseudo-Riemannian space-time.

3 The symmetry breakdown to Lorentz invariance

Relational mechanics model a theory which contains only relative quantities as dynamical
variables. The discussion of Newton’s bucket experiment emphasizes the relativity of global
rotation, and global rotation seems to require the notion of absolute simultaneity. On the
other hand, we do not observe any absolute simultaneity in the circumstances described by
the special theory of relativity. The absolute simultaneity required by relativity of global
rotation should be openly seen only in the gravitational interaction, i.e., it should be hidden
in the circumstances described by SRT. In the previous section it was shown that this cannot
be done with the necessary accuracy.

When we have to abandon the notion of relativity of global rotation, what is left? Rela-
tional mechanics is now to be interpreted as a theoretical scheme which for isolated systems
provides a larger than Galilei invariance in such a way that for the interesting (and not
isolated) subsystems Galilei invariance is observed at least to some extent. This Galilei in-
variance will be valid as long as secular effects (due to the changing state of the embedding
system) and size effects (due to the finite mass and potential of the embedding system) are
negligible. We take the embedding system as the representative for the universe. It acts like



a vacuum for the subsystem, and its state breaks the invariance of the whole. To distinguish
this invariance from the ordinary one we call it telescopic invariance.

It is interesting to try a construction of a theory which contains such a restricted break-
down of some telescopic invariance for small subsystems, but leaves the Lorentz or Poincaré
invariance instead of Galilei invariance. Such a theory has the chance to avoid the problem of
absolute simultaneity. A group which can be broken to leave the Lorentz group must contain
the latter. It cannot, for instance, be the kinematical group of Galilean space-time. On the
other hand, the formal consequences of such a program are enormous. The telescopic group
shall be larger than the Lorentz group, for instance the general linear group. Now, the linear
group does not know of any causality, or light cone, or distinction between space and time.
Parallel to the breakdown to Lorentz invariance, only dynamics of subsystems can exhibit
a difference between space and time, causality, and a light cone. The separation of space
and time, i.e. the existence of a light cone, is kind of induced in a subsystem through the
existence and state of a large embedding system. In contrast to the simple expectation that
without matter the metric vanishes numerically [10],

its very ezistence depends on a nonvanishing matter content (of the universe) [12, 7, 8]. For
the universe, dynamics is different, the action integral (let us assume it exists) is invariant to
the telescopic group. Its construction cannot use the existence of a metric in the usual sense.
Of course, the action integral itself is kind of a measure, but the structure of a second-order
tensor field that “measures” the gradient through expressions like
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should originate only a posteriori, after the reduction to a subsystem. The simplest term in
a linear theory would be the determinant of the gradients of four fields,
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The terms of the Lagrangian will represent at least four-point interactions if we proceed in
this direction.

As in relational mechanics, we have to expect that the Lorentz invariance of subsystems
is not exact. This should result in a more complicated causality structure, for instance in
slightly different propagation cones for different fields or field components [8]. The present
experiments leave basically no place for such kind of effects.

The simplest field theory that does not contain a metric a priori is Schrodinger’s purely
affine theory [18]. It supposes a parallel transport ', forms the Ricci tensor,
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and chooses the action integral S = [ /Ry d*z. The metric is introduced as an a posteriori
construction via Einstein’s equations,

gik = AR .
Of course, this is a formal definition as long as this metric is not used to construct the field
equations of non-gravitational fields or the motion of phenomenological matter. In any case,

this is not the kind of theory which we intend to find: The metric tensor is present without
reference to the state of universe.



References

[1]
[2]
3]
[4]
[5]
[6]

Assis,A.K.T. (1989): On Mach’s principle, Found.Phys.Lett. 2, 301-318.

Assis,A.K.T. (1995): Weber’s law and Mach’s principle, /6], 159-171.

BARBOUR,J.B. (1975): Forceless Machian Dynamics, Nuovo Cim. B 26, 16-22.

BARBOUR,J.B. (1990): Absolute or Relative Motion? Vol.1: The Discovery of Dynamics, Cambridge UP.
BARBOUR,J.B., B.BERTOTTI (1977): Gravity and inertia in a Machian framework, Nuovo Cim. B 38, 1-27.

BARBOUR,J.B., PFISTER,H. EDS. (1995): Mach’s principle: From Newton’s bucket to quantum cosmology,
Birkh&user, Boston.

BLEYER,U., LIEBSCHER,D.-E. (1986): Induced causality, Astron.Nachr. 307, 267-270.
BLEYER,U., LIEBSCHER,D.-E. (1995): Mach’s principle and local causal structure, [6], 293-307.
Dickg,R.H. (1961): Experimental tests of Mach’s principle, Phys.Rev.Lett. 7, 359-360.
GOENNER,H. (1995): Mach’s principle and theories of gravitation, [6], 442-457.

KASPER,U., LIEBSCHER,D.-E. (1974): On the post-newtonian approximation of theories of gravity, As-
tron.Nachr. 295, 11-17.

LIEBSCHER,D.-E., YOURGRAU,W. (1979): Classical spontaneous breakdown of symmetry and the induction of
inertia, Ann.d.Physik (Leipzig) 36, 20-24.

LIEBSCHER,D.-E. (1973): Trégheitsfreie Mechanik und Webersches Potential, Gerlands Beitr.Geophys. 82, 3-12.
LIEBSCHER,D.-E. (1981): Inertia-free mechanics and the bi-metric procedure, Astron.Nachr. 302, 137-142.

LIEBSCHER,D.-E. (1986): Inertia-free mechanics and Lorentz invariance: A simple example, Ann.d.Physik
(Leipzig) 43, 279-289.

REISSNER,HANS (1914): On the relativity of accelerations in mechanics, Phys.Z. 15, 371-375.

SCHRODINGER,E. (1925): Die Erfiillbarkeit der Relativititsforderungen der klassischen Mechanik, Ann.d.Physik
(Leipzig) 77, 325-336.

SCHRODINGER,E. (1950): Space-Time Structure , Cambridge UP.
TREDER,H.-J. (1972): Die Relativitit der Trigheit, Akademie Verlag Berlin.

WIiLL,C.M., NORDTVEDT,K. (1977): Conservation laws and preferred frames in relativistic gravity. I. Preferred-
frame theories and an extended PPN formalism, Astrophys.J. 177, 757-774.

WILL,C.M. (1993): Theory and ezperiment in gravitational physics, revised edition, Cambridge UP.



