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We try to find a way to obtain the very existence of a space–time metric from an action principle
that does not refer to it a priori. Although there are reasons to believe that only a non–local
theory can viably achieve this goal, we investigate here local theories that start with Schrödinger’s
purely affine theory [36], where he gave reasons to set the metric proportional to the Ricci curvature
aposteriori. When we leave the context of unified field theory, and we couple the non–gravitational
matter using some weak equivalence principle, we can show that the propagation of shock waves
does not define a lightcone when the purely affine theory is local and avoids the explicit use of the
Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the
metric, the equations seem to have only a very limited set of solutions. This backs the conviction
that viable purely affine theories have to be non–local.
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I. INTRODUCTION

Purely affine theories became a topic of Relativity
through the search for a theory unifying gravitation and
electromagnetism. The central question of a purely affine
theory is the generation of a metric in the course of the
evaluation of the field equations. Just this point is es-
sential for the discussion of a relativistic form of Mach’s
principle, that still poses open questions in GRT. When
we consider the possibility to construct a background the-
ory for the existence of the metric itself, we have to revise
the features that local purely affine theories present. The
a posteriori generation of the space–time metric is a cen-
tral issue for a relativistic implementation of a Mach-type
symmetry breakdown to locally Lorentz invariant theo-
ries [22–24]. The implementations of the Mach principle
into a relativistic theory of gravity found different aspects
and different directions to explore [3, 39]. Considering a
Mach type symmetry breakdown to locally Lorentz in-
variant theories, the important aspect is that the light-
cone is the structure that should be generated through
that break–down. This implies that the metric struc-
ture itself should not enter the gravitation theory a pri-
ori. The metric structure, together with the existence of
a light–cone, should be the outcome of the theory. In
this context, the distribution of matter in the surround-
ing universe represents the classical vacuum for the local
neighbourhood that breaks the at least affine invariance
of vector spaces to the Lorentz invariance; for a local
breakdown, see Ref. [25]. This is the reason why we do
not use the in other respect successful path to extend the
metric theory to a metric-affine theory [14], but return
again to purely affine theories.

At this point, the metric is only expected to be a
second-order tensor that appears in the simplest equa-
tions of motion, like the motion of pole particles or the
propagation of shock waves of any field. These equations

should be compared with the corresponding equations
of GRT in order to identify the light-cone structure, or
the projective structure used by Ehlers,Pirani and Schild
[11]. Here we shall consider shock waves because the ap-
pearance of the light-cone structure is our central point.
These shockwaves can be matter shocks as well as pure
gravitational shocks. In any case, we need only the sim-
plest approximations. Symmetry properties of the tensor
that is to be identified as metric are a second-order prob-
lem and will not be discussed here.

The first observation is that we cannot avoid the use of
a connection Γa

bc even when the use of an ordinary met-
ric is avoided: The pure definition of a covariant deriva-
tive requires its existence. Then, we have two options.
First, we can formulate the problem to find a metric
as some solution to the Weyl-Cartan problem: To find
a second–order covariant tensor gik that is covariantly
constant with respect to the transport Γa

bc [6, 7]. The
second option is to find independently this tensor from
field equations, and consider its relation to the Γa

bc after-
wards. We choose this latter option here, because we
intend to study the possibility of a dynamical definition
of the metric. Its definition through the Weyl–Cartan
space problem is a priori to the construction of the cou-
pling to matter and not a posteriori. We are interested
in a scheme that constructs the action without use of
the Riemannian metric so that the latter can arise from
dynamics, i.e. a posteriori.

We hence start from a theory that defines gravitation
by a connection field. The question is how to couple ex-
ternal fields and how to get the notion of a metric a pos-
teriori, i.e. to find the equivalent for the metric tensor.
We expect that this a posteriori metric tensor is defined
only to some approximation, or as a result of some sym-
metry breaking process, and that its precise defineabil-
ity requires particular configurations of the gravitational
field.
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Let us construct the simplest action integral for some
fields ΦA, where A stands for any field components with-
out referring to their quality as scalar, vector, or tensor
of any rank. The question of spinors in purely affine
theory requires particular attention, see for instance Ref.
[8, 25]. First, we look for a second–order field theory,
i.e. for an action bilinear in the derivatives, ΦA

,k. How-
ever, covariance requires the use of covariant derivatives,
ΦA

;k, which are defined through some linear connection
Γm

nk. The correction to the ordinary derivative for ob-
taining the covariant one is linear in the coefficients of
the connection and linear in the field,

ΦA
;k = ΦA

,k + CA
B

n
m Γm

nkΦB . (1)

where CA
B

n
m are some coefficients to be determined

and depend on the nature of the matter fields. For
instance, when A stands for indexing the components
of a contravariant vector, then CA

B
n

m = δA
mδn

B . In
metric-affine theories, the interpretation of the torsion
and non-metricity part of the Γa

bc is a famous problem
[4, 9, 14, 41].

Second, the integrand must be a scalar density, so the
indices of derivation have to be compensated by some
appropriate construction that provides upper indices. In
the General Relativity theory (GRT) this is done through
the metric tensor, more precisely, through its contravari-
ant inverse, and combinations of it. Here, we have two
options that are characterized through the use of the
Ricci tensor. We shall consider them below.

Third, we need an invariant volume element [12].
When there is no metric, and hence no determinant of
the metric tensor, the simplest choice is the determinant
of the Ricci tensor, as A.S. Eddington pointed out in the
early 1920’s. This is Schrödinger’s choice too [10, 32–36].
With the simple action,

S1 =

∫

√

−det Rab d4x , (2)

where Rab denotes the Ricci tensor. This was used al-
ready by Eddington [10], but with the restriction to a
symmetric connection. Schrödinger obtained a theory for
the general affine connection that suggested to equate the
Ricci tensor with the metric: The Ricci tensor obeys a
field equation that tells that it is covariantly constant
with respect to the star affinity up to the torsion of the
latter. Therefore, Schrödinger postulated that

gik =
1

λ
Rik . (3)

For an unified field theory that does not explicitly contain
matter this interpretation might be satisfying, but for
a theory with explicit matter terms it is not. Indeed,
Schrödinger’s original intention was to get a unified field
theory with no external matter at all, and the problem
was to find equivalents for the conventional matter first.
In the present work we assume the gravity sector given
by that of Schrödinger’s and see how and which ordinary
matter can be coupled to such a gravitation.

We show that it is not sufficient to purely determine
the Ricci tensor to act as metric. The metric that is
inferred by observation is that of the motion of matter
[9]. This is also the lesson in particular of all theories
with more than one metric tensor [24]. Explicit matter
defines an effective metric by its motion, either by the
motion of test particles or by the motion of shock waves.
We have to define test particles of the matter fields that
allow to construct an effective metric through the Ehlers–
Pirani–Schild procedure [11], or we have to consider the
propagation of shock fronts that only for gravitation pose
a particular problem [30, 38]. We underline that it is
the non-gravitational fields and particles that are used to
determine the gravitational field, i.e. metric properties.
For the electromagnetic field, this has been stated many
times [13, 26, 31], recently by Hehl et al. [15, 16, 28].
This is exactly our point of view. We intend here to con-
sider the relation of this construction — generalized to
any field — to the Ricci tensor, that was Schrödinger’s
favorite choice. It is the matter Lagrangian that is im-
portant when we intend to define a metric. Because it is
quadratic in the derivatives of the fields, we have to use√
−det Rab d4x itself as the invariant volume element,

or alternatively we have to use fields that are densities of
weight 1/2 ??????????[12]???????????.

To construct the matter part of the action within a
local theory, we first recall that in GRT this is given
through

S2 =

∫

Lmatter[Φ
A, ΦA

;k, gik]
√

−det gab d4x . (4)

Our construction is however performed by using Rik in-
stead of gik. Then, we have two options. First, we can
try actions with Lagrangians not explicitly containing the
Ricci tensor, where the latter enters only the volume el-
ement,

S3 =

∫

Lmatter[Φ
A, ΦA

;k]
√

−det Rab d4x . (5)

Alternatively, we may consider a matter action similar to
Eq. (4), but not necessarily implying the equality given
by Eq. (3),

S4 =

∫

Lmatter[Φ
A, ΦA

;k, Rik]
√

−det Rab d4x . (6)

Jakubiec and Kijowski have shown that the latter ac-
tion can be transformed into GRT with a different set of
non-gravitational fields. This helps with respect to the
dynamical structure, but destroys the interpretation of
the deliberately chosen fields [18, 19].

It is, of course, a drawback in the local action that
matter has to exist locally in order to have a geome-
try defined. In the elementary vacuum, ΦA ≡ 0, the
Euler–Lagrange equation might not exist or show singu-
lar behaviour. The matter in the surrounding universe
only, like in Machian approaches, and not the purely local
one, should be as necessary as sufficient to fix a geometry.
However, a non–local Lagrangian will be the next step.
First, we intend to evaluate a local action.
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II. COVARIANT FIELD EQUATIONS

In this section, we intend to show the construction of
covariant field equations derived from the action, eq.(5),
in the case where the transformation properties of the
field components ΦA are not yet defined. We want to
keep our formalism as general as possible, therefore we
consider our basic matter field of the following form
ΦA ≡ [Φi1···im1 k1···kn1

, Φi1···im2 k1···kn2
, ...]; that is, A rep-

resents field components of different fields with different
transformation properties.

We assume, as usual, a local variational principle to
get the Euler–Lagrange field equations in which L de-
notes the Lagrangian in the form L = L[ΦA, ΦA

;k], to be
distinguished from the form L = L∗[ΦA, ΦA

,k, Γi
kl] :

∂L∗[ΦC , ΦC
,l]
√
−det Rab

∂ΦA
− ∂2

∂xk

L∗[ΦC , ΦC
,l]
√
−det Rab

∂ΦA
,k

= 0,

(7)
which are valid for a general tensor field, ΦA, yet unspeci-
fied. Since we want to use covariant variables L[ΦC , ΦC

;l]

instead of L∗[ΦC , ΦC
,l], it is more appropriate to write

Eq. (7) in a covariant form. In order to do that, we
define the covariant derivative through equation (1).

The change from partial to covariant derivatives im-
plies that

∂L∗[ΦC , ΦC
,l ]

∂ΦA
=

∂L[ΦC , ΦC
;l ]

∂ΦA
+

∂L[ΦC , ΦC
;l ]

∂ΦB
;m

∂ΦB
;m

∂ΦA

=
∂L

∂ΦA
+

∂L

∂ΦB
;m

CB
A

j
iΓ

i
jm , (8)

∂L∗[ΦC , ΦC
,l]

∂ΦA
,k

=
∂L[ΦC , ΦC

;l]

∂ΦA
;k

(9)

Then,

D

∂xl

∂L

∂ΦA
;k

=
∂

∂xl

∂L

∂ΦA
;k

+ Γk
jl

∂L

∂ΦA
;j

−CB
A

n
mΓm

nl

∂L

∂ΦB
;k

, (10)

where D
∂xk () ≡ ();k, and

D

∂xk

∂L

∂ΦA
;k

=
∂

∂xk

∂L

∂ΦA
;k

+Γk
jk

∂L

∂ΦA
;j

−CB
A

n
mΓm

nk

∂L

∂ΦB
;k

.

(11)
The determinant of the Ricci tensor transforms as follows

∂

∂xk

(

ln
√

−det Rab

)

=
D

∂xk

(

ln
√

−det Rab

)

+Γm
mk ,

(12)
where we assumed that (in contrast to the notation in
GRT) RijRjk = δi

k. Note that though the metric tensor
also possesses this property, it is not necessarily implied

a relation of the type given by Eq. (3). In fact, below
we will see that in the presence of matter fields the Ricci
and the metric tensors must be different. Combining the
above formulas, we obtain the tensorial equation

∂L

∂ΦA
− D

∂xk

∂L

∂ΦA
;k

−
[

D

∂xk
ln

√

−det Rab + 2Γm
[mk]

]

× ∂L

∂ΦA
;k

= 0. (13)

This is the covariant field equation, valid for a general
matter field ΦA.

Up to this point, an explicit dependence of L on Rik

was not involved. We now turn to the more general ac-
tion, eq.(6). The equation for the affine connection,

∂L[ΦC , ΦC
;l, Rmn]

√
−det Rab

∂Γa
bc

− ∂

∂xk

∂L[ΦC , ΦC
;l, Rmn]

√
−det Rab

∂Γa
bc,k

= 0, (14)

is in this form neither tensorial nor covariant. We start
from the definition of the Ricci tensor,

Rik ≡ Γl
il,k − Γl

ik,l + Γl
imΓm

lk − Γl
ikΓm

lm . (15)

Straightforward calculation yields

∂Rik

∂Γa
bc

= Γr
stErika

stbc , (16)

Erika
stbc = δc

rδ
b
i δ

t
kδs

a + δb
rδ

s
i δ

c
kδt

a − δb
rδ

s
i δ

t
kδc

a − δt
rδ

b
i δ

c
kδs

a ,

∂Rik

∂Γa
bc,d

= Dika
bcd = δc

aδb
i δ

d
k − δd

aδb
i δ

c
k . (17)

Formally, the variational derivatives are

δ[
√
−det Rab L]

δ[Γa
bc]

=
∂
√
−det Rab L

∂Γa
bc

− ∂

∂xd

∂
√
−det Rab L

∂Γa
bc,d

= P B
cCB

A
b
aΦA (18)

+ Erika
stbcΓr

stG
ik − Dika

bcd ∂

∂xd
Gik ,

where we used the abbreviations

G
ik ≡ ∂

√
−det Rab L

∂Rik

and P B
c ≡

√

−det Rab

∂L

∂ΦB
;c

.

(19)
We now solve the Euler–Lagrange equation for Gik

through use of the relation

Dika
bcd

(

δa
l δm

b δn
c − 1

3
δa
c δn

l δm
b

)

= −δd
l δm

i δn
k (20)

and obtain
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∂

∂xl
Gmn = −

√

−det Rab

∂L

∂ΦB
;c

CB
A

b
aΦA(δa

l δm
b δn

c − 1

3
δa
c δn

l δm
b )

− Erika
stbcΓr

stG
ik(δa

l δm
b δn

c − 1

3
δa
c δn

l δm
b ) (21)

= −P B
nCB

A
m

lΦ
A +

1

3
δn
l P B

sCB
A

m
sΦ

A

− Γn
lsG

ms − Γm
slG

sn + Γs
lsG

mn +
1

3
δn
l Gms(Γt

ts − Γt
st) (22)

There are two contractions,

∂

∂xn
G

nm = −P B
mCB

A
n

nΦA +
1

3
P B

nCB
A

m
nΦA − Γm

stG
st +

1

3
G

ms(Γt
ts − Γt

st) (23)

and

∂

∂xn
G

mn =
1

3
P B

nCB
A

m
nΦA−Γm

stG
st+

1

3
G

ms(Γt
ts−Γt

st)

(24)
that is,

∂

∂xn
(Gmn − G

nm) = P B
mCB

A
n

nΦA . (25)

This is the generalisation of the known relation in
Schrödinger’s theory.

In our particular case, we obtain

Γb
kaRck + Γc

akRkb − Γk
akRcb − Γb

klR
lkδc

a + 2
∂lnL

∂Γa
bc

=

[

ln L
√

−det Rab

]

,k

[

δc
aRkb − δk

aRcb
]

+
[

δc
aRkb − δk

aRcb
]

,k
. (26)

By contracting the indices b and c, and substituting that
equation again into Eq. (26) implies that

Rcb
,a +

[

ln
√

−det Rab

]

,a
Rcb +

[

2

3
Γl

[kl]δ
c
a − Γl

alδ
c
k + Γc

ak

]

Rkb + Γb
kaRck = −2

[

∂lnL

∂Γa
bc

− 1

3

∂lnL

∂Γr
bs

δr
sδc

a

]

. (27)

For ∂lnL
∂Γa

bc
, we obtain

∂lnL

∂Γa
bc

=
∂lnL

∂ΦA
;c

CA
B

b
aΦB +

∂lnL

∂Rmn

∂Rmn

∂Γa
bc

. (28)

Schrödinger discovered that by defining a new affinity,

∗Γa
bc ≡ Γa

bc + 2
3δa

b Γl
cl, equation (27) with L =const.

reduces to Rcb
∗

, a ≡ Rcb
,a + ∗Γc

kaRkb + ∗Γb
akRck = 0. In

our case, these definitions imply that

Rcb
∗

, a = −2

[

∂lnL

∂∗Γa
bc

− 1

3

[

∂lnL

∂∗Γk
kc

δb
a +

∂lnL

∂∗Γk
bk

δc
a

]]

+

[

∂lnL

∂∗Γa
kl

− 1

3

[

∂lnL

∂∗Γk
kl

δm
a +

∂lnL

∂∗Γk
mk

δl
a

]]

RmlR
cb (29)

The introduction of matter fields (L 6=const.) avoids Rcb being parallel transported into itself by the star affinity;
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the same holds for the Einstein affinity, see Ref. [40].
Then, the presence of matter fields preclude us to inter-
prete the Ricci tensor as being the metric, see Eq. (3).

III. THE METRIC OF SPACE–TIME IN THE

SHOCK-WAVE PICTURE

There are two kinds of ideal test objects that measure
the geometry of space-time independent of their internal
structure and constitution. This are the pole particles
and the shock waves. Taken together, the propagation of
shock waves (the bisectrices of wave equations) and the
world-lines of pole particles yield the metrical structure
[11]. Here, we consider field theory, hence we identify the
metric, in particular the light-cone structure, through the
propagation of shock waves. The observation of the prop-
agation of (shock) waves defines the metric of the wave in
question. In ordinary wave mechanics, the wave operator
determines the shocks to propagate along its bisectrices.
Each wave equation has its own causal cone when the
wave operators differ in the highest order of derivatives.
The principle of relativity requires that the propagation
is the same for the different fields that one intends to
include as fundamental, but this is a second question.
In a construction like the action given by Eq. (5), the
propagation of shock waves is given through substitution
of

Φshock = Φ0 + θ[z]z2φ (30)

for the fields Φ, where z = z[xk] = 0 defines the shock hy-
persurface, Φ0 and φ are at least C2 in a neighborhood of
the shock. The difference in the second-order derivatives
of the two sides of the hypersurface is

Φ,ik
+ − Φ,ik

− = φ z,iz,k (31)

On the shock front, the Euler-Lagrange equation requires
[5]:

∂2L

∂ΦA
,i∂ΦB

,k

φBz,iz,k = 0 . (32)

In the case of only one scalar field, the result is trivially

gik ∝ ∂2L

∂Φ,i∂Φ,k

(33)

In the case of more than one field component, we ob-
tain a component-dependent propagation of the form

CAB
ikφB z,iz,k = 0 , (34)

where CAB
ik ≡ ∂2L

∂ΦA
,i

∂ΦB
,k

. This represents the eikonal

equations that were already used by Lichnerowicz in de-
termination of the effective metric in the Hermitean uni-
fied field theory, Ref. [20]. In GRT, we have the same
form. However, local Lorentz invariance requires that

this form determines a unique propagation cones at least
for the fundamental free fields. Therefore, the GRT im-
plies separability, i.e.,

CAB
ik = aABgik (35)

in order to obtain equal propagation cones for all field
components [2, 5]. When we expect to get some definition
of at least approximate metric properties from eq. (34),
we have to look for a kind of approximate separability,

CAB
ik = aABgik + εAB

ik , ε small . (36)

Note that the coefficients CAB
ik depend in general

on the construction of L, and not on the construction
of the volume element

√
−det Rab d4x. The space–time

Ricci curvature is irrelevant for the propagation of the
shocks as long as it is not explicitely used in form-
ing Lmatter[Φ

A, ΦA
;k, Rik]. However, explicit use implies

higher order non-linearity, again.

IV. LOCAL ACTION INTEGRALS

With respect to our topic, there are three types of lo-
cal action integrals, but none of them yields a a viable
posteriori metric. Representative for the first type, i.e.
action S3, eq. (5), we assume a contravariant vector field
Φk. When the Ricci tensor enters the action through the
volume element only, we can construct actions like

S3 =

∫

(α Φk
;lΦ

l
;k + β Φk

;kΦl
;l)

√

−det Rab d4x (37)

We obtain

Cab
ik =

∂2L

∂Φa
;i∂Φb

;k
= 2 α δk

aδi
b + 2 β δi

aδk
b (38)

and, therefore,

φbz,b = 0. (39)

This is a limitation only for the amplitude of the shock,
and no limitation for its front. Again, the form of the
volume element does not enter the shock condition. In a
local theory, its construction cannot yield the metric of
space–time.

It is not difficult to see that in a local theory any propa-
gation depends on the local amplitudes of the interacting
fields and not on the geometry of the shock fronts as long
as the lightcones are not deliberately constructed through
use of some second–order contravariant tensor field, i.e.
an a priori metric. Such an a priori metric destroys our
program, and cannot be its solution.

For the second type, we take Schrödinger’s choice to
go around the fatal result that the matter fields itself
cannot locally determine a viable light cone, S4, eq. (6).
We still stick to a local construction and replace the ordi-
nary metric with the Ricci tensor. This might not be the
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final construction because one expects, at least approxi-
mately, metricity of the connection [6], but we need only
the shock approximation and the qualitative features of
the field equations for our argument. We consider an
action of the type given by Eq. (6) that is constructed
using the methods of GRT or of the metric-affine theory
followed by a substitution of Rik for gik (the undifferen-
tiated gik, not in the connection Γa

bc) The propagation
of matter fields, of course, follows now the cone that is
determined by Rik as constructed. However, the field
equation for the connection now yields a restricting con-
dition for the decisive part of the energy-momentum ten-
sor density,

T
ik =

δ[L[g.., Φ
A, (ΦA

,m + CA
B

b
aΓa

bm[g.., g.., .]ΦB)]
√
−det gab ]

δ[gik]
,

(40)
namely,

G
ik =

∂(L[g.., Φ
A, ΦA

;m]
√
−det gab )

∂gik

|at g..=R.. , (41)

where the implicit dependence of ΦA
;m on gik and its

derivatives does not enter. We arrive at field equations
for the connection, Eq. (21), that restrict the energy-
momentum tensor density to kind of constant values, i.e.,
to peculiar, and not general, physical cases.

Third, we may use matter fields to construct a volume
element in order to get field equations in space–times
without curvature, too [1, 12]. In doing that, it is diffi-
cult not to introduce an a priori metric. Akama and Ter-
azawa [1] hide it in the summation of their scalar fields,
Gronwold et al [12] have it explicitly in their Lagrangians
(see their section IV).

The construction of a metric through local non-
gravitational fields has the consequence that a strong
dependence of the metric on local perturbation must be
expected. For instance, the metric components should be
expected to be proportional to the local mass in zeroth
order already. Therefore, we conclude that:

1. an a posteriori observation-based definition of a
metric must rely on non-gravitational fields even in pres-
ence of a curved affine connection, and

2. its definition requires an explicitly non–local action
for the non–gravitational fields.

Summarizing: Local theories of the type given by Eqs.
(5) and (6) do not achieve a viable causal structure. In
the former case, when the Ricci tensor only enters the vol-
ume element, the shock waves of the matter fields do not
feel that metric and are not null surfaces as expected. In
the latter case, when the Ricci tensor is deliberately sub-
stituted for the metric, the Schrödinger result of a covari-
antly constant Ricci tensor turns into a correspondingly
constant matter tensor and excludes nearly all physical
cases. It was our intention to show this in due generality.

When we construct action integrals with fields and con-
nections alone we find field equations that exist only in

the case when both ΦA and Rik are non-trivial. If there
is no matter, the geometry cannot be measured and is
free. If there is no curvature, the motion of matter is
not defined. It is, of course, a drawback in the local ac-
tion that matter has to exist locally in order to have a
geometry defined. The geometry of space-time, however,
is defined locally with matter only at large distance, as
Mach observed.

V. CONCLUSION

After we have shown that local actions will not produce
a posteriori metrics dynamically, we have to make some
remarks about what to expect from non-local action in-
tegrals. Non-local interaction is constructed through at
least twofold integration over space–time. The action,
however, is a delicate point to be constructed properly.
For instance, as long as the Lagrangian L can be ex-
panded in a series of scalar functions at x with coefficients
that are scalar functions at y, one of the integrations can
formally performed and the result is again a local action.
No new physics is found.

When we then try to implement terms like Ψk[x]Φk[y],
we have to see that they are not scalars at all: Ψk[x] is
a vector for substitutions of x, and a scalar for substi-
tutions of y. On the opposite, Φk[y] is a scalar for sub-
stitutions of x, and a vector for substitutions of y. The
product can be made a scalar for both substitutions only
when there exist a bi-tensor γl

m[x, y] that depends on the
two points, and transforms as a covariant vector when the
x are substituted, and as a contravariant vector when y
is substituted [37]. In this case, Ψl[x]γl

m[x, y]Φm[y] is
a scalar and may be used in constructing Lagrangians.
However, with the bi–tensor γ, we introduced a corre-
sponding teleparallel connection [37], and the connection
Γa

bc is no more needed for the constuction. In addi-
tion, it is now equivalent to a tensor field of third order.
Using only the connection constructed from the biten-
sor, we lose the Ricci tensor as equivalent of some met-
ric: The curvature of a teleparallel connection vanishes,
and the Schrödinger choice must be replaced by some
other construction. In addition, it is important to note
that the bi-tensor γ is mixed-variant. A covariant bi-
tensor γik[x, y] is the generalization of the metric tensor
gik[x] = lim

y→x
γik[x, y]. Teleparallel theories are discussed

in connection as with string theory as with rotation in
the universe [27, 29]. This is another story, of course.

The main problem is still that there is no convincing
principle to conduct us. Nevertheless, it appears to be
the only way to realize an a posteriori definition of the
metric in a theory that does not use any metric explicitly
besides the action itself.
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