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ABSTRACT

The Lyα forest absorption lines in the spectra of quasars are interpreted as
caused by the crossings of the light beam with the walls of a bubble structure
(expanding with the Hubble flow only). Then, the typical separation between
the absorption lines is proportional to the mean size of the bubbles. The vari-
able factor is the expansion rate H [z]. The Friedmann regression analysis of the
observed line separations determines the density parameter Ω0, and the normal-
ized cosmological term λ0 = Λc2/3H2

0 of the appropriate cosmological model:

Ω0 = 0.014± 0.002,
λ0 = 1.080 ± 0.006.

Depending on the Hubble parameter this method reveals the values of the
present mean matter density ρM,0 = 2.6 h2 · 10−28 kg m−3 and of the cos-
mological constant Λ = 3.77 h2 · 10−52 m−2 (with h = H0/(100 km/s·Mpc)).
According to our analysis all models with Λ = 0 must be excluded. The curva-
ture of space is positive. The curvature radius R0 is 3.3 times the Hubble radius
(c/H0). The age t0 is 2.8 times the Hubble age (H−1

0
).
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Recently Hoell and Priester (1991b) ([HP91] hereafter) showed that the Lyα
forest in quasar spectra can be understood as the result of a homogeneous bubble
structure at least up to a redshift of z = 4.4 if the universe is represented by a
Friedmann-Lemâıtre model with an actual expansion rate H0 = 90 km/(s·Mpc)
and an age of about 30 · 109 years. In the present paper we include data from
further spectra, partly new, partly omitted in the first paper because of a too
cautious estimation of their sensitivity. The analysis is now based on published
spectra of 21 quasars with a total of 1320 Lyα absorption lines and supports
the old result. The apparent increase in scatter is balanced by the increase
in number. Hence, the estimated variance of the parameters does not change
appreciably. The Friedmann regression analysis yields the values of the density
parameter Ω0 and of the normalized cosmological term λ0 = Λc2/3H2

0 . The
generalized density parameter Ω∆

0 = Ω0 + λ0 turns out to exceed 1, i.e. the
space is closed and the curvature index is k = +1.

The method is based on the assumption that the bubble structure in the
large scale distribution of matter, which is observed in our galactic neighbour-
hood up to a redshift of 0.05 (deLapparent et al. 1986) was at rest in comoving
coordinates at least since the emission of the quasar light, and that the Lyα
forest in the quasar spectra is due to the cuts of the light beam through hydro-
gen filaments within the walls of the bubble structure. For a homogeneous and
comoving bubble structure the size parameter X of the voids is independent of
time. The mean spacing Z between the absorption lines is measured as a func-
tion of the redshift z itself, and we replace the time t by the corresponding value
of the redshift z. If we denote the typical bubble size in comoving radial distance
χ by X = ∆χ and the corresponding spacing of the redshifts by Z = ∆z, we
obtain

Z = X · dz

dχ
= X

R0

c
H [z]. (1)

Here, R0 is the present scale factor, and the quotient dz/dχ has been trans-
formed using the well-known formulae for the propagation of light in the ex-
panding universe. We adopt the definition of the typical bubble size used by
[HP91]. The bubble wall interpretation circumvents the difficulties of the de-
tailed structure and evolution of intergalactic matter in the walls (Sargent et
al. 1980, Kundt and Krause 1985, Ikeuchi and Ostriker 1986, Bond et al. 1988,
Dorozhkevich et al. 1990) as long as the walls are sufficiently optically thick in
Lyman alpha. This is the case for z > 2 as the data of Bahcall et al.(1991,1992)
and Morris et al.(1991) show.

The Friedmann equation requires H2 to be given by the matter content, the
curvature, and the cosmological constant Λ:

H2[z] = H2

0 (λ0 + (1 − Ω∆

0 ) (1 + z)2 + Ω0 (1 + z)3). (2)

Ω∆
0 = λ0 + Ω0 is the generalized density parameter determining the curvature

of space (the space is closed, if Ω∆
0 > 1). z is the redshift of an object emitting
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or absorbing radiation at time t.

Combining eqs. (1) and (2), we get the regression polynomial

Z2 = a0 + a2 · (1 + z)2 + a3 · (1 + z)3 (3)

with

a3 = X2
kΩ0

Ω∆
0
− 1

(4)

a2 = −kX2, (5)

a0 = X2
kλ0

Ω∆
0
− 1

(6)

Since the Lyα-forest spectra yield Z[z] we can obtain these coefficients from a
third-order regression with a1 = 0. A detailed discussion of the regression anal-
ysis is presented in Liebscher, Priester, Hoell [LPH92].

The data used are given in Tables 1 and 2. Since the data from Table 2 are
based on spectra of lower resolution we have assigned weights w to the data as
explained in the legend of the Table. The spacings Z given in column 7 and 8
respectively were found by counting the number of Lyα absorption lines in the
given wavelength ranges, each centered at the redshift z. Details are explained
in [HP91]. The scatter in the line profiles due to the peculiar motions of the
hydrogen filaments must be taken into account. Their Doppler shifts are pro-
portional to (1 + z). They are superposed on the cosmological redshifts of the
bubble walls. This explaines the changes in the line structure with increasing
redshift.

The three-parameter regression, eq.(3), applied to the 36 data sets in Tables
1 and 2 yields the coefficients

104a0 = 0.8433, (7)

104a2 = −0.0736, (8)

104a3 = 0.0111. (9)

The estimated variance of the Z2 is of the expected order of magnitude, i.e.
corresponding to a counting uncertainty of ±2 lines in a range of 200 Å . This
indicates that we have enough entries in our table to estimate this error at all
(compare [LPH92]).

The best-fit parameters from this regression are

X =
√
−a2 = 0.0027, (10)
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Ω0 = a3/(a0 + a2 + a3) = 0.0142, (11)

λ0 = a0/(a0 + a2 + a3) = 1.0801, (12)

Ω∆

0 = (a0 + a3)/(a0 + a2 + a3) = 1.0943. (13)

The present physical size d0 of the bubbles is

d0 = R0X =
c

H0

√
a0 + a2 + a3 = 30 Mpc for H0 = 90 km/(s·Mpc). (14)

The regression curve is given in Fig. 1 by the thick line labeled (2). It is only
slightly different from the curve (1) which was obtained from the data of Table
1 as used in [LPH92].
In order to demonstrate the effect of the different weights assigned to the data
of Table 2 we calculated an additional regression by using the weight w = 1.0
for all the data. The results are:

X =
√
−a2 = 0.00280, (15)

Ω0 = 0.0154, (16)

λ0 = 1.0842, (17)

Ω∆

0 = 1.0996. (18)

This is given as curve (3). We again see that the results do not change essentially.
This is explained by the fact that the Friedmann formula contains a quadratic
term (proportional to (1 + z)2) and a cubic term (proportional to (1 + z)3), but
no linear term. This makes the method extremely powerful.
Fig. 2 presents the results of Ω0 and λ0, labeled in the same way as in Fig. 1. In
addition, results are given for the case that the two data at very low redshifts
(line 1 and 2 of Table 1) are left out from the regression analysis, in order to
see how sensitive the values of a0 (proportional to λ0) react to this omission. It
is obvious, that the omission has a negligible effect on the outcome. This again
demonstrates the power of the Friedmann regression analysis.

The line counting procedure still contains the problem of estimating the
influence of spectral resolution, the equivalence widths and the possible line
blending. A special investigation of this problem can be done on the basis of
the statistics of line separations (Bi, Börner and Chu 1989). The necessary cor-
rections for the value of the mean separation cannot change the ranking of the
different separations. Therefore, the value zmin of the redshift of least expansion
rate will not be affected. Sign and relative magnitude of Ω∆

0 − 1 and Ω0 will
not change, only the relation of both to λ0 can shift (compare Fig. 2). A close
inspection of the high resolution spectra (Pettini et al. 1990) shows that any
influence of that kind produces minor corrections only.
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No realistic error will lead to an acceptable model with Λ = 0. The fit of an
ad hoc model with Λ = 0,

Z2 = a2 · (1 + z)2 + a3 · (1 + z)3, (19)

would produce a3 < 0, i.e. negative density, because the positive leading term is
now a2 (1 + z)2, and the smaller values of Z for higher redshifts would require
a3 < 0. We further note that the fit of a model for flat space, a2 = 0, with
Λ 6= 0,

Z2 = a0 + a3 · (1 + z)3, (20)

would produce a negative density as well, the third-order term again being
responsible for the smaller high-redshift values of the spacing. The regression
curve for the cold dark matter model (k = 0, Λ = 0),

Z2 = a3 · (1 + z)3, a3 = 0.5226 · 10−6 (21)

produces an extremely poor fit to the observations. Thus, our results rule out
all of these three alternative models.

Our results back the analysis of Fliche and Souriau (1979), who tried to
derive the dimensionless parameters of the cosmological model by adapting
the Hubble diagram for quasars, and the approach of Fukugita, Takahara, Ya-
mashita and Yoshii (1990), if one generalizes the latter approach for non-zero
curvature.

The values of the Hubble parameter H0 and of the present matter density
ρM,0 are related by

ρM,0 = Ω0 · ρc,0 = Ω0 ·
3H2

0

8πG
= Ω0h

2 · 1.88 · 10−26 kg · m−3, (22)

where h = H0/(100 km/(s Mpc)). In the following we use the results of eqns.
(10) to (13). For a Hubble parameter of 90 km/(s·Mpc), our analysis reveals an
age t0 of 30 · 109 years and a matter density of 2 · 10−28 kg·m−3. This value
of the present matter density is in agreement with the value obtained from the
analysis of the primordial nucleosynthesis. These calculations reveal the ratios of
4He, 3He, D, and 7Li as shown in Fig. 3 as a function of the ratio of the number
densities of photons to baryons (following Olive 1991). The calculations yield
the present baryonic matter density, because the number density of photons is
given by the background temperature of T = 2.735 K. For the lifetime of the free
neutron the range t1/2 = 10.1 to 10.4 min was taken into account. The observed
densities of the light atoms are given by the ordinates of the squares. The black
bar on the abscissa indicates the optimum value of the matter density ρM,0 =
(1.9 ± 0.7)· 10−28 kg·m−3.
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The age of 30 ·109 years is not only significantly larger than the Hubble time
H−1

0
for our value of H0, but also for a Hubble parameter H0 ≈ 50 km/(s·Mpc)

with H−1

0
≈ 20 · 109 a.

Our model with the large age contains a period of slow expansion (5 · 109 a
< t < 15 · 109 a), which greatly modifies the problem of galaxy formation. This
is shown in Fig. 4, where the evolution of the normalized scale factor R(t)/R0

is presented as a function of cosmic time for different cosmological models.
They were calculated for H0 = 90 km/(s·Mpc), ρM,0 = 2 · 10−28 kg·m−3 and a
radiation density of ρR,0 = 0.47 · 10−30 kg·m−3. The thick line represents our
best-fit model with ρΛ = 16.4 · 10−30 g·cm−3 corresponding to Λ = 3.1 · 10−52

m−2. At R/R0 < 0.2 corresponding to z > 4 the expansion slowed down, so that
galaxy formation could take place preferably during this period. Figure 5 shows
the evolutionary path of four of the models of Fig. 4. The density parameter
Ω[t] and the normalized cosmological term λ[t] = Λc2/3H2[t] are given here as
function of x = R[t]/R0 for Ω0 = 0.0138 as obtained in our regression analysis.
The formulae for Ω[x] and λ[x] result from the Friedmann equation:

Ω[x] = Ω0x
−3[λ0 + (1 − Ω∆

0 )x−2 + Ω0x
−3 + ω0x

−4]−1, (23)

ω[x] = ω0x
−4[λ0 + (1 − Ω∆

0 )x−2 + Ω0x
−3 + ω0x

−4]−1, (24)

λ[x] = λ0[λ0 + (1 − Ω∆

0 )x−2 + Ω0x
−3 + ω0x

−4]−1. (25)

For completeness we added the term ω[x] of the contribution of relativistic
particles (photons). This part, however, is important only for x < 10−3 and ex-
clusively dominant for x < 10−13. For H0 = 90 km/(s·Mpc) and a background
temperature of 2.735 K, this results in ω0 = ρR,0/ρc,0 = 3.1 · 10−5. The gener-
alized density parameter is here Ω∆

0 = Ω0 + ω0 + λ0. One should be aware that
the parameters in the polynomial

H2[z] =
∑

i

mi(1 + z)i (26)

may change in phase transitions of any kind (recombination, annihilation, infla-
tion). These changes have to be considered separately.

Again the thick line in Fig. 5 represents our best-fit model λ0 = 1.08. It
is noteworthy that in this model the density parameter Ω is larger than 4 for
redshifts between 6 and 4.5. This is of vital importance for galaxy formation
from gravitational instabilities on the bubble walls. All acceptable Friedmann-
Lemâıtre models with Λ > 0 begin with Ω[0] = 1.0 and λ[0] = 0.0 and end
at Ω[∞] = 0.0 and λ[∞] = 1.0. For the classification of Friedmann-Lemâıtre
models see the new discussion in Blome and Priester (1991).

At the time tQ = 10−33 s at the presumed origin of the primordial quarks
and leptons the parameters of our models during this early phase, which is
dominated by the density of the relativistic particles, are

λ[tQ] =
Λc2

3H2[tQ]
=

ρΛ

ρc[tQ]
= 3 · 10−101 (27)
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with ρΛ = 1.6 ·10−26 kg·m−3 and ρc[tQ] = 5 ·1074 kg·m−3. According to eq. (24)
we obtain ω[tQ] = 1 − 3 · 10−101 for the k=0 model and ω[tQ] = 1 + 2 · 10−54

for our best fit model, which evolved to Ω0 = 0.0138 at our present epoch. The
results from the observational data contradict those inflationary scenarios which
predict flat space (Ω∆

0 = 1).
The basic assumption in our analysis was that of an essentially time-

independent typical bubble size in comoving coordinates (i.e. subject only to
the cosmological expansion) together with the wall-crossing interpretation of
the Lyα absorption lines. This approach is additionally supported by our sce-
nario for the origin of the bubble structure at the time of recombination in the
early universe (see [LPH92]).

Our analysis shows that the cosmological constant and the curvature of
space are both positive. In Friedmann-Lemâıtre models with positive Λ the
cosmological term determines the cosmic expansion after a characteristic time,
represented by the point of inflection (the * in Fig. 4). Thereafter the expansion
approaches a de Sitter evolution. The Friedmann equation determines the final
value of the Hubble parameter (Hoell and Priester 1991a):

H(t → ∞) =

√

1

3
Λc2 = H0

√

λ0. (28)

Since
√

λ0 is close to 1, the present H0 is already close to H∞. Thus, the
often quoted conundrum of the fine-tuning (3H2

0 ≈ Λc2) does not exist because
3H2

∞
= Λc2. Our analysis yields the normalized cosmological term with a small

error bar:
λ0 = Λc2/3H2

0 = 1.080± 0.006. (29)

Einsteins cosmological constant Λ follows as function of the Hubble parameter:

Λ = (3.77 ± 0.02) h2 · 10−52 m−2. (30)

The determination of Einstein’s Lambda from the Lyα spectra offers now
the possibility for comology to determine the actual value of the vacuum en-
ergy density in our universe, a fundamental quantity for quantum field theory
(Weinberg 1989; Priester, Hoell and Blome 1989).

Quantum field theory suggests the existence of a stress-energy tensor due
to non-zero vacuum expectation values. By its Lorentz invariance, this vacuum
component obeys the equation of state p = −ε. It has the same dynamical effect
as the cosmological constant, and is often identified with it, as first proposed by
by McCrea (1951) and Gliner (1966, 1970). Accepting this we obtain a ”vacuum
density”

ρV = 2.0 · h2 · 10−26 kg m−3 (31)
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or for the vacuum energy density

εV = 1.82 · h2 · 10−8 erg cm−3 and (32)

εV = 1.14 · h2 · 104 eV cm−3, (33)

respectively. This is a large value compared with the energy density of the
cosmic background radiation (εr = 0.26 eV cm−3), but it is extremely small in
comparison with the energy density of the so-called false vacuum in the very
early universe. The consideration of the quantum vacuum implies additional
complications due to its possibly more general structure and due to its possible
changes in phase transitions (e.g. see Streeruwitz (1975), Guth(1980), and Blome
and Priester (1984, 1985, 1991).

We thank Drs. H.-J.Röser, P.A.Strittmatter and H.Kühr for the permission
to use their spectra for our analysis before publication.
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Figure Captions

Fig. 1

Friedmann regression analysis: fits of the data sets from Tables 1 and 2 by a
polynomial of third order as given by the Friedmann equation. Curve (1) is
based on the high resolution data of Table 1 only, curve (2) on all data, with
the weight factors of Table 2. In curve (3) all data have equal weight factors.

Fig. 2

Values of λ0 and Ω0 resulting from the Friedmann regression analysis. The la-
bels 1,2,3 indicate the different data bases as described in Fig. 1. Additional
data points (small circles) show the effect in case the two data of low redshift
are omitted in the regression. The 1σ error curve is given by the dash-dotted
”ellipse”. The outer dashed line represents the 3σ error.

Fig. 3

The primordial nucleosynthesis yields He, D and Li as function of the ratio of
number densities of photons to baryons (Olive 1991). The neutron half-lifetime
is here taken in the range 10.1 to 10.4 min. The observed data are given by the
squares. The optimum present baryon densities are (1.9 ± 0.7) · 10−28 kg m−3.

Fig. 4

The cosmic scalefactor R[t], normalized to its present value R0, as function of
time for Friedmann-Lemâıtre models with Λ ≥ 0. The thick line represents our
best-fit model. The stars mark the points of inflection. The models were calcu-
lated with H0 = 90 km/(s· Mpc), ρM,0 = 2·10−28 kg m−3 and ρR,0 = 0.47·10−30

kg m−3.

Fig. 5

Evolutionary tracks of Ω[x] and λ[x] for four of the models given in Fig. 4 as
function of x = R[t]/R0 or as function of the redshift z. All tracks are based on
Ω0 = 0.014 as obtained in our regression analysis.
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Table 1: Lyα forest data
The number n of Lyα absorption features in 200 Å ranges at a red-
shift z is shown. ∆λ, in Å, is the average separation between the Lyα
lines corresponding to the typical separation between adjacent bubble walls.
The respective redshift intervals are ∆z = Z as given in column 7.

j λMIN λMAX n ∆λ z 102Z 104Z2 origin reference

1 - - - - 0.03 0.900 0.810 local voids [8]
2 1216 1408 - 10.7 0.08 0.880 0.774 3 C 273 [2][21]
3 3850 4050 23 8.7 2.25 0.715 0.512 QSO 0420-388 [1]
4 4100 4300 24 8.3 2.46 0.685 0.470 QSO 0420-388 [1]
5 4450 4650 28 7.2 2.74 0.588 0.345 QSO 0420-388 [1]
6 4750 4950 26 7.7 2.99 0.633 0.400 QSO 0420-388 [1]
7 6400 6600 26 7.7 4.35 0.633 0.400 QSO 0952-01 [17]
8 4600 4800 26 7.7 2.87 0.633 0.400 S5 0014+813 [25]
9 4800 5000 27 7.4 3.03 0.609 0.371 S5 0014+813 [25]

10 5100 5300 30 6.7 3.28 0.548 0.301 S5 0014+813 [25]
11 5050 5250 25 8.0 3.23 0.658 0.433 OQ 172 [25]
12 5250 5450 26 7.7 3.40 0.633 0.400 OQ 172 [25]
13 3860 4052 23.3 8.6 2.25 0.706 0.498 QSO 2206-199N [23]
14 4070 4282 25.3 7.9 2.43 0.650 0.423 QSO 2206-199N [23]
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Table 2: Additional data of N Lyα-lines in the specified ranges of 200 to 800 Å.
The number n corresponds to a 200 Å interval. Due to the lower resolution
and signal to noise ratio of these spectra the statistics are improved by tak-
ing larger intervals. We assigned the full weight (w=1.0) to a 800 Å inter-
val and decreasing weight factors to the 600, 400 and 200 Å ranges. The
spectra 15 to 25 are taken from Sargent et al. (1988), 26 to 29 from Steidel
(1990)., 30 to 31 from Carswell et al.(1991), 32 to 36 from Rauch et al.(1992).

j λMIN λMAX N n ∆λ z 102Z 104Z2 w source

15 4900 5100 29 29 6.90 3.11 0.567 0.322 0.25 0114 -089
16 3900 4500 89 29.7 6.74 2.45 0.554 0.308 0.75 0913 +072
17 4600 5400 102 25.5 7.84 3.11 0.645 0.416 1.0 1159 +124
18 3260 3660 47 23.5 8.51 1.84 0.700 0.490 0.5 1247 +267
19 4300 4700 56 28 7.14 2.70 0.588 0.345 0.5 1511 +091
20 3700 4300 72 24 8.33 2.29 0.685 0.470 0.75 1623 +269
21 4800 5200 44 22 9.09 3.11 0.748 0.559 0.5 2126 -158
22 3900 4500 106 35.3 5.66 2.45 0.466 0.217 0.75 0142 -100
23 3500 3900 60 30 6.67 2.04 0.548 0.301 0.5 0237 -233
24 3600 3800 33 33 6.06 2.04 0.499 0.249 0.25 0424 -131
25 3300 3500 18 18 11.11 1.80 0.914 0.835 0.25 1017 +280
26 5100 5700 86 28.7 6.98 3.44 0.574 0.329 0.75 2000 -330
27 5400 5600 24 24 8.33 3.52 0.685 0.470 0.25 0055 -269
28 5400 6200 134 33.5 5.97 3.77 0.491 0.241 1.0 0000 -263
29 5400 5800 48 24 8.33 3.60 0.685 0.470 0.5 1208 +101
30 3440 3640 25 25 8.0 1.91 0.658 0.433 1.0 1100-264
31 3640 3780 16 23 8.7 2.05 0.715 0.511 0.75 1100-264
32 4500 4600 15 30 6.7 2.74 0.548 0.301 0.5 0014+813
33 4600 4800 30 30 6.7 2.87 0.548 0.301 1.0 0014+813
34 4800 5000 28 28 7.1 3.03 0.588 0.345 1.0 0014+813
35 5000 5100 12 24 8.3 3.15 0.685 0.470 0.5 0014+813
36 5100 5300 24 24 8.3 3.28 0.685 0.470 1.0 0014+813
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