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1. Introduction

The question of a possible influence of global structure of the Universe
on local physical laws is one of the most fundamental problems of natural
science. The topicality of this question comes from the geometrization of
all interactions by modern gauge field theories following Einstein’s theory
of gravitation as well as the consideration of energy regions in elementary
particle physics which could be realized only in early stages of the evolution
of the universe (Bleyer and Liebscher 1988). Corresponding to Poincaré’s
epistemological sum, stating that the physical content of a theory is defined
by geometry plus dynamics, we might handle the interconnection between
physics at small and large distances in two different ways. In unified field

theories, dynamics is based on a geometry of the space-time manifold in



which the global existence of a causal structure is assumed a priori, and
the local laws determine everything else. In the opposite case, the connec-
tion between local motion and global structure will be given by the Mach—
Einstein postulate of the induction of inertial properties of matter mediated
by the joint gravitational influence of cosmic masses. We argue for a realiza-
tion by pregeometric models in which the metrical structure and, therefore,
the causal properties are induced dynamically due to dynamical principles
(Treder 1974a).

In the framework of mechanics, a consistent realization of the Mach—
Einstein principle was given in an analytical description of inertia-free me-
chanics by Schrodinger (1925) with the help of the Weber potential, by
Treder with the help of the Riemann potential (Treder 1972, 1974) and by
Barbour in his forceless or relational mechanics (Barbour 1975; Barbour and
Bertotti 1977). In these constructions, inertia is replaced by interaction in
that the kinetic terms are replaced by (velocity-dependent) potentials. The
integral of these interactions over the surrounding universe leads for small
subsystems to kinetic terms, which can be interpreted as induced inertia.
The Galilei invariance arises locally as the remaining part of a larger “tele-
scopic” (Planck 1913; Neumann 1870) symmetry of the total universe, the
latter being broken in the restriction to a subsystem by the interaction with
the universe in its actual state. That is, the laws ruling the universe are
assumed to be more symmetrical than the locally observed ones, but the
state of the universe in detail may be much less symmetrical and produces
local symmetry only by the averaging effect of integrals (see also the con-
tributions in this volume of Ehlers and Nordtvedt). Measurable effects of

such an induction scheme should the appear as small deviations from locally



Galilei invariant laws due to comparatively short range inhomogeneities and
the expansion of the surrounding Universe.

However, in the conventional approach to relational mechanics, the def-
inition of rotation requires a definition of simultaneity, and the unbroken
part of the telescopic group can never be the Lorentz group. At most, we
may expect to get the Galilei group. Of course, one may try a bimetric
theory and construct Minkowski-signature metrics in an effective space on
background Galilei symmetry. This last together with the preexisting defi-
nition of simultaneity in the background would be hidden in the equations
of motion of nongravitational fields (Liebscher 1981). However, the a priori
simultaneity shows up in the gravitational interaction, in particular in the
post-Newtonian approximation. For any bimetric construction of the kind
mentioned, the absolute simultaneity in the background shows up in the

coefficient (Kasper and Liebscher 1974)

2
a = <ﬂ> ~1, (1)
Vg

where v; denotes the velocity of light propagation and v, the velocity of
gravitation propagation. In the case of relational mechanics, the problem
becomes that of getting Poincaré or Lorentz invariance as unbroken residue
of the telescopic symmetry.

Full Mach-Einstein constructions should be consistent with special rela-
tivity theory (SRT). If the classical symmetry breakdown (as yet constructed
only in mechanics) is the essence of Mach-Einstein constructions, we have
now to construct an induction formalism for local Lorentz invariance (LLI)
(Liebscher and Yourgrau 1979). If this succeeds, the LLI, i.e. the Minkowski

metric of tangent spaces, which currently appears as an absolute element of



GRT, will be shown to be dynamically induced (Ehlers, loc.cit.). We believe
this to be necessary, because if one accepts the existence of local Lorentz
frames a priori, the influence of the cosmos is washed out (see the contribu-
tion of Bondi in this volume). Generalizations of the mechanical induction
schemes for inertia have to end up with LLI for a perfectly symmetric Uni-
verse. Consequently, Mach—Einstein effects will arise as perturbations of
LLI due to the potentials of short range cosmological inhomogeneities. By
analogy with the induction schemes for mechanics, deviations from Lorentz
invariance have to be expected in the kinetic terms, i.e. in the differential

operators (Liebscher 1985).

In the first half of this paper, we consider a framework in which break-
down of a large telescopic group to an approximate Lorentz group might
occur. In the second part (which was only shortly mentioned at the work-
shop), we consider a model that illustrates the possible experimental effects
of the reduction to only approximate Lorentz invariance.

2. Mach’s principle and local causal structure

As we have seen, a relativistic Mach—Einstein principle should be realized
in a pregeometric theory that starts without the assumption of LLI. Based
on other considerations, this has been stated implicitly by Heller (1975a).
He started with Mach’s principle in the following formulation: The local
inertial frames are entirely determined by the distribution and motion of all
matter present in the Universe (Bondi 1960; McCrea 1971). Under Heller’s
assumption the local inertial compass and the local light compass must

coincide due to the dynamical properties of matter (Pirani 1956; Goenner



1970; Reinhardt 1973). Consequently, a principle like the one stated can
not be realized in a physical theory which fulfills the following assumptions

normally used to introduce General Relativity:

1. Spacetime is a four dimensional, connected, orientable, paracompact

and Hausdorff C"(r > 1) manifold without boundary.
2. An affine connection is given together with:

3. A Lorentz metric related by Ricci’s Lemma to the connection: gy, =

0.

In such a space-time, it is possible to introduce a continuous system
of linear frames induced by the tangent space at every point of the man-
ifold. Local inertial frames are linked to these linear frames in a manner
not refering to any matter fields. Therefore, local Lorentz—Minkowski struc-
ture exists independent of dynamical properties of matter. This contradicts
Mach’s principle in the formulation given above. It is also possible to intro-
duce a cosmological time referring only to topology and causal structure of
the space-time manifold (Heller 1975).

This is another argument for demanding the realization of Mach’s prin-
ciple in a theory that starts without local Lorentz structure, i.e. with pre-
geometric models in which the local causal structure has to be induced
dynamically.

One might consider at this point a conformal theory which is reduced
to Lorentz invariance by some (presumably scalar) mass-generating field.
There are two reasons, why we do not want to follow this route. First, we
believe it to be more interesting to have a larger extension of Lorentz invari-

ance, and to ask for a dynamical explanation of causality. Second, there are



a lot of theories that begin with conformal invariance which are purely local,
i.e. in which the local (quantum) vacuum instead of the universe mediates
the symmetry breakdown. We would consider this case to be an anti-Mach
option. Hence, a purely affine theory should provide the simplest nontrivial

scheme for our purpose.
3. Affine symmetry and its breaking

Equations of motion or field equations can be formulated only on differ-
entiable manifolds or locally trivial fibre bundles, on which an appropriately
introduced topology allows to erect freely choosen reference frames. In me-
chanics, we start from a manifold of events. A system of axioms may ensure
that the topology permit a C? differential structure such that any trajectory
of a particle is a one-dimensional C? manifold denoted as the world line of
the particle. The physical equations restrict the configurations of the man-
ifold of events to the physically possible states. Further axioms are needed
in order to define the invariance properties of the physical laws and as a
consequence the geometry of the manifold of events. One possible axiom is
connected with the law of inertia. It states: At every point of the space-time
manifold M there exist a Riemannian coordinate system {z'}, so that we
have for every world line of a non-interacting particle with an appropriately
choosen parameter s the equation

ot ) @) _ o
ds ds?  ds? ds ’
This expression is invariant with respect to the group of affine transforma-

tions. If we restrict ourself to four dimensional space-time (see Lammerzahl



and Macias 1993), we find the physical geometry given by the Klein geom-
etry (M, A(4)) (Treder and Bleyer 1988).

In axiomatic foundations of mechanics, the affine group is restricted ad
hoc or with the help of axioms to special subgroups, the Galilei group or the
Poincaré group. In a Mach-Einstein program, this reduction should be a
symmetry breakdown by the actual state of the universe. This is the reason
to try first an affine invariance as telescopic symmetry in our approach,
and to expect the reduction to local Poincaré invariance by the state of the
universe.

We now consider some general aspects of fields in affine space.

The existence of a unique pseudo-Riemannian metric, together with gen-
eral covariance, implies LLI. Therefore, the dynamical induction of LLI
means dynamical induction of the existence of such a metric.

For a procedure inducing the metric of macroscopic motion as a conse-
quence of the dynamical equations of auxiliary fields, the metric tensor has
to be eliminated from the usual microscopic Lagrangian. This was tried by
Terazawa and coworkers in their approach to pregeometry (Akama and Ter-
azawa 1983). But in order to get scalar-density Lagrangians out of vectors or
spinors one needs some tensor to form scalars, and they use the Levi-Civita

symbol. In the scalar case, the action reads

S = /d% (det[z o4, 4 l]) : F[®], (3)
PR

with some scalar function F'[®]. In such a way, the Lorentz group of the prin-
cipal bundle is apparently replaced by the centroaffine group if we consider
a chosen field on the background of the others. However, to construct the

pregeometric Lagrangian, a nondynamical Lorentz metric is already used,



and from this point of view the proposed pregeometry is just a special kind
of a bimetric theory. The sum over the scalar fields hides a pseudo-Euclidean
metric in the space of ® (Liebscher 1985). This construction shows that the
existence of a Minkowski metric in the tangent space has to be a posteriori
in the proposed Mach-Einstein induction scheme too. The only measure
that the Lagrangian of the multicomponent fields ®“ can have is the metric
of the affine group, i.e. the Levi-Civita symbol. A Lagrangian that avoids
the a priori existence of a pseudo-Euclidean metric has to consist of terms
that use only this symbol apart from the fields ®4 and their derivatives.
Another important point has to be made in connection with the gauge
field theory based on the affine group given by Ne’eman and Sijacki (1988).
Here too a metric is hidden from the very beginning in the assumption of the
existence of a “flat gauge” as a Lorentz-subgroup invariant. The correspond-
ing matter coupling forms the symmetry breakdown to the Poincaré sym-
metry beforehand. That is, the reduction to LLI is formed by the assumed
coupling to matter and not by the actual state of the matter distribution.
In addition, the procedure of getting at LLI by a local symmetry breakdown
produced by the state of the local vacuum is an entirely anti-Mach proce-
dure. From this point of view, the question of Mach’s program is whether it
is the local vacuum or the state of the universe which is responsible for LLI.
What will field theory without metric look like? If we expect a wave
equation for some multicomponent field quantity @, the effective coefficients
g*" in the wave operator O = gkl%:m, have to be constructed from these field
quantities themselves. Therefore, in manifolds without a priori metric tensor
field, the effective metric has to be an integral, i.e. a nonlocal quantity. This

is the technical aspect of the epistemological expectation that inertial (in



relativity: metric, or causal) properties are to be determined by the global
distribution of the fields in the manifold. The possibility of constructing an
effective wave equation from an affinely invariant action lies in higher-order
space-time integrals.

Second-order field equations for the multicomponent field ®4 take in

general the form
C a8 i = first derivatives and source terms. (4)

If for some field configuration ®* the quantity C, g% = % decom-
poses into a product aspg™, we get the factor g™ as the effect,ive (con-
travariant) metric induced by the field itself. The factor a 4p might mix the
field components in the chosen representation.

Despite the fact that there is no constructive example of such an induc-
tion scheme, the formal construction shows in which direction deviations
from the usual picture of relativistic field theories are to be expected. An
a posteriori recovery of wave equations implies that the wave equation is
only approximately separable for the different components of the field, and
the finiteness of the potentials of the matter distribution in the universe can
be expected to give rise to small deviations from the usual wave operator.

These deviations should be at least of order 10~#° (Dirac’s number), at most

of order 1075 (Newtonian potential of the Galaxy).
4. Matter field equations for generalized causal structure

Before considering experimental consequences, we want to note the re-

lation of premetric constructions to the axiomatic approach to space-time



structure. The particle concept of quantum field theory suggests the deriva-
tion of the space-time structure from the basic exigencies of field theory
(Liebscher 1985a). The procedure is to discover and to describe the geo-
metrical structure of space-time by means of the behavior of appropriately
selected physical systems (called primitive objects), in particular physical ef-
fects taken as basic experiences (Lammerzahl 1990). Extending the axiomat-
ics of Ehlers, Pirani and Schild (1972) based on light rays and test particles
to the concept of free matter waves as primitive elements, Audretsch und
Lammerzahl (1990) gave a complete axiomatics leading to Riemann-Cartan
space-time. The basic experiences refer essentially to interference exper-
iments. Subsequently, Audretsch und Ladmmerzahl (1991) improved this
approach by considering plane matter waves as a particular limiting case of
wave mechanics defined by a general field equation in a manifold with a con-
formal structure. As field equation for the vector-valued complex field the
most general linear system of partial differential equations of arbitrary order
was considered. This procedure was physically justified for the description
of matter in a further paper (Audretsch und Lammerzahl 1991a).
Constructive axiomatics do not include Lorentz invariance from the be-
ginning. But they are usually restricted to Lorentz invariant structures. In
addition to fundamental assumtions such as a deterministic and local evo-
lution of fields and the validity of a superposition principle, the demand
of LLI is one of the assumptions in constructive axiomatics (Audretsch und
Lammerzahl 1991). Not demanding Lorentz invariance in advance raises the
necessity of independent tests leading to upper limits for possible deviations
from LLI. The general interest in such tests meets our interest in testing the

effects of a scheme that we try to design.
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Relational mechanics produces the Galilei group as unbroken residue of a
telescopic group. Local inhomogeneities in the universe lead to effects in the
kinetic part of the theory (for instance to anisotropic mass). In analogy, we
have to expect effects in the kinetic part of a field theory, which exist in our
local space-time. These kinetic effects show that the LLI is only approximate
like the approximate Galilei invariance in relational mechanics. Only effects
in the kinetic terms, i.e. the leading degree in the field equation, can be
characteristic for an only approximate LLI. Additions to the lower degree
terms cannot be expected to differ qualitatively from other ordinary fields
coupled to the field in question. Therefore, we want to model just the effects
in the kinetic terms in order to see what might be expected to be testable.
It turns out that the central point is a kind of spin-dependent propagation
of signals. Different components of a multicomponent physical field follow
different propagation cones (Bleyer and Liebscher 1988; Treder and Bleyer
1988; Bleyer 1991). The mutual configuration of these cones, e.g. a common
time axis and spatial isotropy, can be used to define special reference frames.

We consider first an arbitrary second-order Euler-Lagrange equation of
a multicomponent field. The highest (second) derivatives with respect to

the field functions are
O ik _ oL
4B 904 9aB |

Using an ansatz for a shock wave front on the surface z = 0 given by

(5)

‘I>Az>0 = q)Az<0 + ¢A22, (6)

we find for the jump function the equation (for a mathematically more ex-

plicit treatment see Audretsch, Bleyer and Lammerzahl (1993))
Cap*ziz k" = 0. (7)
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The existence condition for jumps reads
det(C g zi2) = 0. ®)

In the case of N components of the field ®4, this is an equation of order 2N
in z;.
In SRT shock fronts are possible only on the light cone. The existence

condition for jumps degenerates to
(g%zizx)" =0, (9)

where N denotes the number of components of the ®-field. Therefore,
Lorentz invariance is ensured by the factorization of the coefficients of the
field equations

Cag" = aang™. (10)

As a consequence, all field components fulfil the wave equation separately
and all field components follow a common light cone.

If there exist deviations from the factorization condition (10), we have
Ot = ang® + cad’ i

In this case, the different field components no longer satisfy the wave equa-
tion separately, they are mixed. To first order in the perturbation e, #¥, we

find in an appropriate field representation

N—l(glm + aAB lm

(gikz,iz,k) €sB)%21%m = 0. (12)

So we have the product of two different 2-surfaces, the first for N — 1 field
components, the second for the last one. This means that in an appropriately

choosen field representation one field component follows a propagation cone

12



different from the common light cone. In the general case, one more field
component leaves the common light cone in each higher approximation. The
light cone is replaced by a surface of order 2N, which may be constructed
from N different propagation cones. In this way, we find a general field
theoretical model for a component-dependent propagation behavior. If we
can connect the different field components with spin projections or polariza-
tions, we can speak of a spin or polarization dependent propagation. Some
analogy to this situation is known from Maxwell’s theory of birefringent me-
dia. This component-dependent propagation for one multicomponent field
is a generalization of non-LLI model theories in which different fields are
assumed to follow different propagation cones (see the contribution of Will
in this volume).

One can show that the Dirac equation
iV, BopUp = MPUg (13)

can be generalized like the wave equation to provide an analogous model
theory for non-LLI. This will be a generalization of the Dirac matrices,

which will no longer satisfy the usual anticommutation relations, but

()5 = 2 ((M50ME + 0M56NE). (14)

If we restrict the perturbations by physically meaningful conditions like spa-
tial isotropy in the preferred frame and helicity conservation (Audretsch,

Bleyer and Lammerzahl 1993), we can write

e | A +ary
I+ e
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In this case, the dispersion relations read

_1+te
1t

E V2R (16)

The effective parameter describing deviations from LLI is given by € = €1 —eo.
The choice of perturbations of the form (15) avoids at least lower-order

anisotropy problems.
5. Testing possible Machian effects
The first effect of the explained generalization of the Dirac (GDE) equa-

tion should be an additional hyperfine splitting of the energy levels of the
hydrogen atom given by (Bleyer 1993)

a? -
E, = 1+ —— 17
n m + (n+3)2 bl ( )
with e = 0
1
s= [k —a?(1+e)]”. (18)

On the other hand, these effects can be made arbitrarily small by limitations
on the perturbation parameters e.

Experiments give upper limits on the numerical values of the effective
perturbation €; — e2. In the case of the hydrogen atom, we find for the fine

structure splitting

[MN

o? - o? 2 at(lte)?
E, = 14— —— |1 o (1
nk = 1T +(n~|—l~z)2 2 +(n~|—l~z)2 k(n + k)3 oo (19)
and we get the bound
e <1078, (20)
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The change to u-mesic atoms does not give stronger limitations. This shows
that the hydrogen atom is not such a sensitive indicator of deviations from
the Lorentz invariant Dirac theory as is widely believed.

These results show the GDE to be meaningful in order to look for further
experimental consequences which give us the possible order of magnitude of
the perturbations. For this problem, it is important to notice that the
GDE can be connected to other model theories for the breaking of Lorentz
invariance (Nielsen and Picek 1983; Froggatt and Nielsen 1991).

Up to now, the most restrictive experimental limit on the perturbation
parameters in the GDE is given by the so called Phillips experiment (Phillips
and Woolum 1969; see also Froggatt and Nielsen 1991). This experiment
determines the daily variation of the torque acting on a ferromagnet hanging
on a string. In this way, one can examine the existence of a preferred
reference frame, in which the velocity of the earth ¥’ is connected with the

spin S of the electrons via a coupling term (we use c=h =1)
Hipye = bm, 5. (21)

The experiment limited the expected splitting of the two different spin states

AB = Hi(S = 5) ~ (S = ) = bmv. (22)

The same coupling term occurs for the GDE. This can be seen in the Pauli

approximation up to the first order in the perturbation parameters. We find
with U = (i) , .

ia—f - 2p—m(,0 + eSip. (23)

If we substitute in (22) the values for the electron mass and the velocity of

15



the earth on its orbit around the sun (v = 30 km/s), we find
emev = 10717 J. (24)
The experimental result gives
AE<T710% J, (25)
and, using the above result, we find
| e|< 10718, (26)

This is the upper limit for the e perturbations in the order v/c. But the
disadvantage of this experiment is that we have to put in a velocity of the
laboratory frame with respect to an assumed global reference frame.

This will be not the case for atomic or neutron interferometers, where
the only assumption will be that we have nonrelativistic velocities and can

neglect terms of the order v?/c2. We use (23), which can be also written as

Oy
i— — H 27
5 ©, (27)
with
p’ =
H= 2—<p + Hipg, H;,, = eSp. (28)
m

For the interferometer experiment, the incoming beam of particles with def-
inite helicity state will be split into two beams, which after some travelling
along different paths will be recombined. In one of these two paths, a spin
flip will be performed along a definite distance [ corresponding to a time of
flight At. This leads with Hipg from (28) to a phase shift (Audretsch, Bleyer
and Lammerzahl 1993),

Ap = fpodt = ){Hintdt

16



= 2e— (29)

with the Compton wavelength A, := h/mc of the particles used.

For the neutron interferometry we find with A\, = 107" m and [ = 107!

60 ~ 10 . (30)

Together with the accuracy 10737 of the neutron interferometer, this gives

us for the perturbations a bound of the order of magnitude
€< 1077, (31)

For an atomic interferometer, this value can be improved by at least two
orders of magnitude. We find for the helium atom A = 0.2 10~ m and the
measuring device has an effective length of [ = 1.3 m. So we have finally the
most restrictive limitation expected from future measurements (Audretsch,

Bleyer and Limmerzahl 1993)
€< 107", (32)

6. Conclusions

The Lorentz group defines the causal structure of the Minkowski space-
time, the light cone, the mass shell and so on. Every theory producing the
Lorentz group has to explain the existence of a light cone or the Lorentz-
Minkowski causality. This is also the demand on theories realizing Mach’s
principle constructively. For such theories, Mach-Einstein effects appear as

a perturbation of LLI. Disturbance of Lorentz invariance means that this
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symmetry is broken and the field equations are no longer Lorentz invariant,
but their deviation from Lorentz invariant equations is small in a reference
system chosen appropriately. This can be realized in model theories like the
GDE.

A model theory based on a generalization of the Dirac equation repre-
sents a simple violation of local Lorentz invariance (LLI). This violation of
LLI is related to the fact that the generalised Dirac matrices do not fulfill any
Clifford algebra. Using physically meaningful requirements like conservation
of helicity, isotropy of the null cones, we reduce the problem to the general
violation of LLI in a minimal nontrivial model. In the non-relativistic limit,
the result is a special spin-momentum coupling leading to a splitting of the
mass shells and consequently of the null cones.

This spin-momentum coupling can be most suitably tested with atomic
beam interferometry using spin flip devices. Our model would lead to a
phase shift proportional to the parameter e characterising the splitting of
the null cone. Assuming a negative outcome of atomic beam interference ex-
periments and taking into considertion the accuracy of the respective appa-
ratus, we obtain upper limits for the parameter characterizing the violation
of LLI. The great and increasing accuracy of atomic beam interferometers
makes it very desirable to perform such experiments, because this would
lead to improved limitations of LLI violations: |¢| < 10717,

Two points have to be stated again. The minor one is the remark that
the null result of the experiments discussed may only prove that the fields
constitutive for the full system in question are not the first ones to leave the
common light cone, eq.(12). To find the components that split off in the first

or second place might be a difficult task. The second remark concerns the
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far more difficult question of the status of the local symmetry breakdown,
i.e. the question whether the actual state of the universe or the actual
state of the quantum vacuum is responsible for the symmetry breakdown to

LLI. In our understanding, only the first variant should be labelled Machian.
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Answer to the post-conference comment of J.B.Barbour:

The approach we tried to design is a generalization of the first way
you mention. Instead of the invariants of the telescopic group of relational
mechanics, which can be chosen to be the kinematic group of euclidean space
times the reparametrisation group of time, we believe it necessary to use for
instance invariants of the affine group to construct action integrals. The
telescopic group of relational mechanics really uses absolute simultaneity,
and does not break down to the Lorentz group.

The generalization of this approach by intrinsic derivatives, the second
way you mention, is an ingenious idea, but with respect to the approach
which we try to design it has to be judged by the result. The fact that we
find General Relativity and Local Lorentz Invariance exact and independent
of the subtleties of the matter distribution shows that the breakdown to
Local Lorentz Invariance is built in the structure of the approach and is
not mediated by the matter distribution. The reason is probably the close
relation to general covariance in a metric construction. There is no a priori
existence of a metric of space in the generalization of the first way.

We feel it completely justified to say that General Relativity is a perfectly
relational theory, and the connection between Maupertuis’ principle and
quantum gravity opens a deep insight into GRT. However, the second way
does not realize a configuration-dependent breakdown to a metric space-time
or space: The existence of an invariant metric is independent of the state of
the content of space-time. In this property it is unlike relational mechanics,
which realizes a configuration-dependent breakdown of the telescopic group:

for an inhomogeneous Universe we get no exact invariance group at all.
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Of course the way we tried to design might not work at all, or give
unacceptable results, or should even not be labelled Machian. Nevertheless,
it is an independent and different generalization of the outlay of relational

mechanics to field theory.
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