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Abstract. General relativity is reconsidered by starting from the un-
questionable interpretation of special relativity, which (Klein 1910) is
the theory of the invariants of the metric under the Poincaré group of
collineations. This invariance property is physical and different from
coordinate properties. Coordinates are physically empty (Kretschmann
1917) if not specified by physics, and one shall look for physics again
through the invariance group of the metric. To find the invariance group
for the metric, the Lie motion (“Mitschleppen” in his words) is ideal for
this task both in special and in general relativity. For a general solution
of the latter the invariance group is nil, and general relativity behaves
as an absolute theory, but when curvature vanishes the invariance group
is the group of infinitesimal Poincaré motions of special relativity. Solu-
tions of general relativity exist with invariance groups intermediate be-
tween the previously mentioned extremes. The Killing group properties
of the static solutions of general relativity were investigated by Ehlers
and Kundt (1964). The particular case of Schwarzschild’s solution is ex-
amined, and the original choice of the manifold done by Schwarzschild in
1916 is shown to derive invariantly from the uniqueness of the timelike,
hypersurface-orthogonal Killing vector of that solution.

1. Introduction

The year 2010 lies, in physics, midway between two centenaries. At the
time of writing, five years have elapsed since the centenary of the Einstein
year 1905, with the onset of special relativity theory [1], and five years too
separate us from the centenary of the discovery of the general theory of
relativity [2], [3]. Both theories are in present times rightly studied and
considered like pillars of physical knowledge. It is quite surprising to re-
mark, then, that the mutual relationship between the two theories is still
clouded by some fog that needs to be completely dissipated. This happens
because, while the physical interpretation of the special theory of relativity
is unique and clear since the writing, in 1910, of the well known sentence by
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Felix Klein2, the group theoretical interpretation of general relativity the-
ory is still in want of further understanding of its physical meaning along
the path set by the very early remarks of Kretschmann [6] and of Noether
[7] respectively. This problematic situation becomes evident whenever so-
lutions of that theory are encountered, that happen to possess a nontrivial
Killing structure. Like we shall see in the following, this is a frequently
overlooked, but by no means minor issue. In fact, for ease of computation,
nearly all the solutions to the field equations of general relativity studied up
to now by the relativists are endowed with some symmetry, i.e. their metric
manifolds possess nontrivial Killing groups of invariance. Whether and how
the occurrence of these nontrivial physical structures influences the physi-
cal interpretation of particular solutions will be the subject of the present
investigation. The weight of the argument is best understood if one takes
one step back, and starts the discussion from the nontrivial Killing structure
associated with the invariance of the Minkowski metric manifold under the
group of collineations mentioned by Klein, whose physical content was clear
in 1910 and is still unquestionable today.

Although it is not immediately prominent, the discussion of the Killing
structure is an extension of the good old principle that rest can be defined
only with respect to some other object - to some other body in mechanics, to
some other object in general. In classical mechanics, a body can be at rest
with respect to itself, then it is inertially moving, no acceleration involved.
It can be temporarily or permanently at rest with respect to some other
body with no such condition. In Special Relativity, being at rest the one
to the other requires for both inertial, acceleration-free motion because of
the lack of absolute simultaneity. In GRT, the two notions of being at rest
with repect to one-self and being at rest to another body fall apart. To be
at rest with respect to one-self remains inertial motion. To be at rest with
respect to another body implies to be at rest with respect to the structures
of the gravitational field produced by this second body. A body is at rest in a
gravitational field when the field does not change along its world-line. When
such a world-line exists, it is a Killing trajectory. As we shall see, due to the
more complicated structure of a metric field, the field itself must reflect the
inertial state of its source. In the most general case, when the Killing group
is trivial, the events of space-time may be intrinsically characterized through
the different invariants to be constructed with the Riemann tensor, and any
world-line passes through varying environments so that it can never be called
to be at rest. The gravitational field must allow a congruence of timelike
world lines, along which the field does not change. A particle moving on

2“Was die modernen Physiker Relativitätstheorie nennen, ist die Invariantentheorie des
vierdimensionalen Raum-Zeit-Gebietes, x, y, z, t (der Minkowskischen “Welt”) gegenüber
einer bestimmten Gruppe von Kollineationen, eben der “Lorentzgruppe”[4],[5]. English
translation: “What the modern physicists call theory of relativity is the theory of the
invariants of the space-time region, x, y, z, t (the Minkowski “world”) with respect to a
given group of collineations, namely the “Lorentz group”.
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such a world line can then be called at rest with respect to the field. In
other words, a rest can be defined in a manifold with a timelike Killing
congruence. These fields will be studied in section 5 . Due to the existence
of the gravitational field, being at rest is no more an acceleration-free state.
To be at rest in a gravitational field implies to be accelerated all the time,
and the acceleration is the curvature of the Killing trajectories. When the
Killing congruence is uniquely defined, the curvature of its lines yields again
a measurable scalar quantity, as we shall discuss in section 5.

2. The Minkowski metric in curvilinear coordinates

The world-lines of free motion and all the other trajectories of the sub-
group of translations of the Poincaré group form a set of straight lines, which
is used to introduce the “Galilean coordinates”[8] we are used to. The metric
expresses the full Poincaré group, and obtains the known form in Galilean
coordinates. In GRT, the world lines of free motion do not form a set of
straight lines any more, and the invariance group may be reduced to even
the trivial group. Hence, no simplifiying coordinates exist.

No doubt, if the Minkowski “world” is described by availing of “Galilean
coordinates”[8] x, y, z, t, with respect to which the metric gik reads

(2.1) gik = ηik = diag(−1,−1,−1, 1),

a great simplification occurs. When this representation is adopted, the co-
ordinates xi are not just labels for identifying events. Due to this particular
form of ηik, Galilean coordinates have a direct metric reading, i.e. to each
particular system of coordinates a physically admissible, inertial reference
frame, to be built with rods, clocks and light signals, is directly associated in
one-to-one correspondence. Moreover, when this representation is adopted,
one recognizes that the Poincaré group of transformations, besides being en-
dowed with direct physical meaning, is the group of invariance of ηik. The
invariance of ηik under the Poincaré group constitutes what Klein and later
Kretschmann once called the physically meaningful “relativity postulate” of
the original theory of relativity of 1905. Although Galilean coordinates are
adopted for ease of representation, it is clear that the “relativity postulate”,
i.e. the group of invariance, is physical and coordinate independent. There-
fore other representations, that do away from Galilean coordinates, could
be availed upon as well.

To ease the comparison of special relativity with the general relativity of
1915, where the adoption of general curvilinear coordinates, with the associ-
ated group of covariance, in keeping with the fundamental work by Ricci and
Levi-Civita [9], is de rigueur, it is necessary to describe the Minkowski met-
ric manifold in general curvilinear coordinates too. In this way the duplicity
characteristic of the Galilean coordinates disappears. In the Minkowski
manifold curvilinear coordinates are just labels, devoid of physical meaning
beyond the mere topological identification of the events. In fact the only



4 SALVATORE ANTOCI AND DIERCK-EKKEHARD LIEBSCHER

physical restriction on curvilinear coordinates, needed for preserving the in-
dividuality of the single event, is just that any transformation between two
such systems of coordinates needs to be one-to-one. The elements of the
abstract Poincaré group have in general no global representation through a
coordinate transformation occurring between two arbitrarily given systems
of curvilinear coordinates xi and x′i. Since the existence of the elements of
the Poincaré group, meant in the abstract sense, does not depend on the
choice of the coordinates, it is fundamental to learn what subgroup of the
abstract Poincaré group, if any, can find a mathematically affordable repre-
sentation with respect to a general system of coordinates. If this question
is positively answered, studying the symmetries of a pseudo-Riemannian
manifold with a unique mathematical formulation of general character that
applies both whether the curvature tensor Riklm of the metric manifold is
vanishing or not will become a well defined problem.

It is clear that curvilinear coordinates are unsuitable in general for provid-
ing a global account of the symmetry properties of a curved manifold. If the
curvature tensor Riklm is nonvanishing one shall restrict the study of these
symmetries to an infinitesimal neighbourhood of a given event. Happily
enough, in this limit the powerful mathematical tool of Lie’s infinitesimal
“dragging along” (“Mitschleppen” [10]) of a metric field can be used [8].

Let us consider a pseudo Riemannian manifold equipped with two curvi-
linear coordinate systems x′i and xi (i = 1, .., 4) such that

(2.2) x′i = xi + ξi,

where ξi is an infinitesimal four-vector. Under this infinitesimal coordinate
transformation, the components of the metric tensor g′ik in terms of gik read

(2.3) g′ik(x′p) =
∂x′i

∂xl

∂x′k

∂xm
glm(xp) ≈ gik(xp) + gim ∂ξk

∂xm
+ gkm ∂ξi

∂xm
.

The quantities in the first and in the last term of (2.3) are calculated at the
same event (apart from higher order infinitesimals). We desire instead to
compare the quantities g′ik and gik calculated for the same coordinate value,
i.e. evaluated at neighbouring events separated by the infinitesimal vector
ξi. To this end, let us expand g′ik(xp + ξp) in Taylor’s series in powers of
ξp. By neglecting higher order infinitesimal terms, we can also substitute
gik for g′ik in the term containing ξi of the expansion truncated at the first
order term, and we find:

(2.4) g′ik(xp) = gik(xp) + gim ∂ξk

∂xm
+ gkm ∂ξi

∂xm
− ∂gik

∂xm
ξm.

But the difference δgik(xp) = g′ik(xp)− gik(xp) has tensorial character and
can be rewritten as

(2.5) δgik(xp) = ξi;k + ξk;i

in terms of the contravariant derivatives of ξi. When

(2.6) ξi;k + ξk;i = 0
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δgik(xp) = 0, and the metric tensor gik goes into itself under Lie’s “Mitschlep-
pen”[10] along ξi. An infinitesimal Killing vector is defined as a four-vector
ξi that fulfills (2.6). We assume for instance that, at a given event, n infin-
itesimal Killing vectors aξ

i, a = 1, .., n exist. They define the infinitesimal
“Mitschleppen” group of rank n, against which the metric gik remains in-
variant. In another instance, let us consider the solutions of Eqs. (2.6) that
hold when Riklm = 0. Its vectors ξi define the elements of the infinitesimal
Poincaré group. Eqs. (2.6) thereby provide the sought-for unique math-
ematical description of the local symmetries for both the special and the
general theory of relativity through the corresponding Killing groups.

3. Kretschmann’s objection to Einstein’s interpretation of
general relativity

Despite the warning implicit in Klein’s ironic sentence of 1910 [4], when,
at the end of the year 1915, both Einstein and Hilbert arrived at the field
equations of general relativity, both of them thought that their fundamental
achievement entailed, inter alia, the realisation of a theory of gravitation
whose underlying group was the group of general coordinate transforma-
tions. At variance with Hilbert’s standpoint, that the adoption of general
coordinates was per se a great advance in physics, due to the extraordinary
achievement thereby obtained in the mathematical structure of the theory,
in Einstein’s original idea the newly acquired group-theoretical property of
general covariance was believed to be an essential one from a physical point
of view. According to Einstein’s original conception of general relativity [11],
giving up the Galilean coordinates and the a priori Minkowski metric ηik and
admitting general, curvilinear coordinates might allow, on physical grounds,
the introduction of reference frames that do away from the arbitrary singling
out of the inertial frames as the only admissible ones. Since, according to
the early version of the equivalence principle, gravity and acceleration of a
test particle had to be identified locally at any given event, in the newborn
theory of gravitation curvilinear coordinates should be introduced not just
for availing of the convenient mathematical tools introduced by Ricci and
Levi-Civita [9], but due to a cogent physical reason in the first place. It is
mathematically exhibited by the shifty role of inertial and of gravitational
forces, identified as the two nontensorial addenda that appear in, say, the
equation of geodesic motion

(3.1)
D2xi

ds2
≡ d2xi

ds2
+ Γi

kl

dxk

ds
dxl

ds
= 0,

and were interpreted [11] by Einstein just like acceleration and gravitation
respectively. In this way, the vanishing of acceleration or the vanishing of
gravitation at a given event could be produced in principle through suitably
chosen coordinate transformations belonging to the group of general coordi-
nate transformations. In the same year 1915, however, Erich Kretschmann
had published in Annalen der Physik a long article [12], entitled “Über
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die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger
Relativitätstheorien” (On the fact that, in any relativity theory, legitimate
systems of reference can be determined in principle), in which an accurate
analysis of the relation between observation and mathematical structure in
a theory possessing a generic postulate of relativity is developed. No wonder
then, if two years later, with the paper [6] entitled “Über den physikalischen
Sinn der Relativitätspostulate; A. Einsteins neue und seine ursprüngliche
Relativitätstheorie” (On the physical meaning of postulates of relativity;
A.Einstein’s new and his original theory of relativity), the same author pro-
duced an analysis of the relation between the “special” and the “general”
theory of relativity that defied the previously quoted group-theoretical as-
sessment by Einstein, and proposed an alternative of his own, whose objec-
tion was entirely in keeping with Klein’s remarks. The validity in principle
of Kretschmann’s objection was soon acknowledged by Einstein himself [13].
Acceptance was allotted henceforth to Kretschmann’s way of assessing the
very meaning of “relativity”. In keeping with Kretschmann and Klein, the
“relativity content” of a given theory should not be ascertained through the
group of covariance allowed by the particular expression adopted for writing
the equations of that theory in terms of certain coordinates. It should be
assessed through its group of invariance, meant to be “a physical property
of the system”. As learned in the long time elapsed since the publication of
Kretschmann’s paper of 1917, in a Riemannian metric manifold the group
of invariance of the metric is directly inscribed by the Killing vectors in the
intrinsic, geometric structure of a manifold.

4. Interpretation of solutions with nontrivial Killing groups
in general relativity

In keeping with Kretschmann’s objection, curvilinear coordinates used
to describe a certain solution of general relativity are physically vacuous,
because the field equations of any theory could be written with such coor-
dinates, while the invariant properties of the metric, accounted for by the
associated Killing group, convey information on the physical content of the
solution under question. The long known relation between invariance and
true conservation of physical quantities, first investigated by Noether [7], is
another proof of the validity of the latter assertion.

The seemingly obvious objection raised by Kretschmann has far-reaching
consequences. First of all, while the Killing group of the metric of special
relativity is just the Poincaré group in the limit case of infinitesimal mo-
tions, for a general solution of the field equations of general relativity the
Killing group reduces to the identity, i.e. general relativity, despite its very
name, in that case behaves indeed like an absolute theory. Moreover in gen-
eral relativity particular solutions exist too, whose Killing group happens to
be intermediate between the Poincaré group for infinitesimal motions, that
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prevails when Riklm = 0, and the trivial group that holds when the solu-
tion under question has no symmetry whatsoever. An overlooked property
is thereby emphasized: the general relativity of 1915 is more appropriately
considered to be a theory whose intrinsic “relativity content” is not given a
priori once and for all, like it happens in the special relativity of 1905. Its
true content can be ascertained only in a case by case way, after its solutions
are found, and the elements of the Killing group are determined by solving
the Killing equations (2.6). Different solutions, i.e. different manifolds can
and do exhibit a different relativity postulate, possibly a vanishing relativity
content. Moreover, different submanifolds of a given manifold can and some-
times do exhibit Killing groups with a different relativity postulate in which,
according to the well known results by Noether [7], different conservation
laws can and do prevail.

5. The peculiar Killing group of the static solutions of
general relativity

A physically quite relevant example of solutions to the field equations of
general relativity with a nontrivial Killing group is given by the so-called
static solutions. The notion of staticness as an intrinsic feature independent
from coordinates was clearly in the mind of a mathematician like Levi-
Civita when he introduced and discussed at length static solutions given in
symmetry-adapted static coordinates, shown in his ground-breaking work
[14] on “Einsteinian statics” and in the series of eight Notes [15]-[16], all
entitled “Einsteinian ds2 in Newtonian fields”. The direct, intrinsic defi-
nition of staticness through the perusal of the “static Killing group” only
appeared much later in the chapter published in 1964 by Ehlers and Kundt
[17]. We shall follow the intrinsic definition of staticness, more precisely, the
definition of static vacuum fields through their Killing vectors, since it is the
only way to enlighten a property of uniqueness, that was given explicitly in
[17] for the first time, and is crucial for grasping the quite novel physical
property of staticness as it occurs in general relativity. It is exhibited by the
exact vacuum solutions, but its peculiarity is usually paid scarce attention
in the literature. In [17], after having proved

Theorem 2-3.1: “A space-time is static if and only if it admits a group G1

of isometries whose trajectories form a time-like, normal congruence.”

on page 65 Ehlers and Kundt reach theorem 2-3.2 and the crucial

Corollary 1. “In a static space-time there exist precisely one static con-
gruence, and precisely one G1 with time-like, hypersurface-orthogonal tra-
jectories provided that either the conform tensor is non-degenerate or the
time-like eigenvector of the Ricci tensor is simple.”

From these results it transpires that the notion of staticness in general
relativity has a deep meaning that directly stems from the peculiar structure
of the Killing group decided by solutions to the field equations, and finds no
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counterpart in the different Killing structure of the infinitesimal Poincaré
group set a priori in special relativity.

In the latter theory, through a given event, an infinite number of distinct
timelike Killing vectors can be drawn. To any such vector, through a given
event one and just one spatial hypersurface can be found, that is orthogo-
nal to the chosen timelike Killing vector. This means that the foliation of
spacetime in space and time can be performed in infinite ways in special
relativity, i.e. it has no intrinsic character [18]. Through an infinitesimal
Poincaré transformation, or through a sequence of these transformations,
any one of the distinct timelike Killing vectors can be brought to rest in the
coordinate and in the reference frame sense. This occurs in keeping with
the very notion of relativity of motion that prevails in special relativity: no
absolute rest can be defined in an intrinsic way in the Minkowski metric
manifold.

According to Corollary 1, the opposite is true for the ample class of
vacuum solutions of general relativity that are named static after Ehlers
and Kundt. Through a given event of such a solution, provided that ei-
ther the conform tensor is non-degenerate or the time-like eigenvector of
the Ricci tensor is simple, a unique timelike Killing vector exists, that is
hypersurface-orthogonal too. From it, one and just one static congruence
is defined through the given event. When this is the case, the foliation of
spacetime in space and time, that is frame-dependent in special relativity
[18], is instead uniquely given at each event. This foliation is an absolute
one, an absolute physical property intrinsic to the manifold. When gravita-
tion is present, by measuring the metric in principle one can decide whether
a test body is intrinsically at rest or not with respect to the manifold under
question.

Solutions to the vacuum field equations of general relativity that are static
in the sense of Ehlers and Kundt do exist. Solutions belonging to the class
found by Weyl [19] and by Levi-Civita [16] have been proved [17] to be static
in that sense. It is mandatory to interpret physically the static solutions
of the field equations of general relativity by paying due attention to the
peculiar uniqueness property exhibited by their Killing group.

6. Choosing the manifold of Schwarzschild’s solution

In general relativity, it is obvious that the manifold to be associated to
a given solution cannot be chosen by deciding a priori the ranges of the
coordinates in certain charts. Since coordinates are mere labels, the choice
of the manifold must always rely on intrinsic physical arguments that need
to be developed a posteriori, once a solution to the field equations is found.
To this end the nontrivial Killing structure of the solution needs to be in-
vestigated. Its outcome may be crucial for the very choice of the manifold.
As a corollary to the results of the previous sections, the example of the
intrinsically motivated choice of the manifold that necessarily applies to the
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Schwarzschild solution [20], [21], when the properties of its Killing group are
kept into account, is given here.

In the symmetry-adapted coordinates x1 = r, x2 = ϑ, x3 = ϕ, x4 = t
chosen by Hilbert [21], the interval of Schwarzschild’s solution reads

(6.1) ds2 =
(

1− 2m
r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dϑ2 + sin2 ϑdϕ2),

where m > 0 agrees with the mass of a body in the Newtonian limit. Due to
the spherical Killing symmetry of the solution, we shall set −π/2 ≤ ϑ ≤ π/2
and 0 < ϕ ≤ 2π. When r > 2m, the solution is static in the sense of Ehlers
and Kundt. Like it occurs with the Weyl-Levi Civita solutions, at any
event a unique hypersurface-orthogonal wordline of absolute rest is drawn,
defined in the chosen coordinates through constant values of r, ϑ and ϕ.
Let us consider a test body on a certain worldline of the manifold, whose
four-velocity is ui ≡ dxi

ds ; its acceleration four-vector, i.e. the first curvature
of its worldline [22], is defined as

(6.2) ai ≡ Dui

ds
≡ dui

ds
+ Γi

klu
kul,

where D/ds indicates the absolute derivative. From it, one builds the scalar
quantity

(6.3) α = (−aia
i)1/2.

When the test body lies on a worldline of absolute rest, the norm of its
four-acceleration, written in the chosen coordinates, reads

(6.4) α =
[

m2

r3(r − 2m)

]1/2

.

Through a given event, α is uniquely defined by the Killing structure of
the manifold [17]. Therefore it is clear that this quantity, besides being an
invariant, is intrinsic to the manifold. In fact, due to the uniqueness of
the hypersurface-orthogonal time Killing vector, in the definition of α no
arbitrary choices based on elements foreign to the structure of the manifold,
like the arbitrary choice of a certain worldline, have been invoked. The
acceleration is measurable through the power of an engine trying to keep
a rocket stationary. Nevertheless, one should not call this a singularity, as
M.McCallum noted in [28], because this notion is reserved for curvature
properties, even if Schwarzschild debated this way [20].

7. Further remarks on Schwarzschild’s manifold

One should remember that, when the group-theoretical argument recalled
in the previous Section is overlooked and, like it happened with the choice of
the manifold done by Hilbert [21] in his reinterpretation of Schwarzschild’s
original solution, the range of the radial coordinate r is assumed to be 0 <
r < +∞, a pathology soon appears. It originates from the difference in the
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Killing groups prevailing for r > 2m and for r < 2m respectively, and it can
be avoided only if the changes of topology of Hilbert’s manifold produced
by the maximal extensions of Synge [23], Kruskal [24] and Szekeres [25] are
introduced. This pathology is usually given scarce relevance in the literature,
although e.g. Rindler did not forget to mention it in his book [26]. However,
in order to appreciate its full meaning, one has rather resorting to Synge,
were a detailed discussion of the issue of the time arrow in the Schwarzschild
solution can be found [23]. In keeping with Synge, a manifold meant to be
a model of physical reality must fulfill two postulates. One of them is the
postulate of order, according to which the parameter of proper time along
a timelike geodesic must always either decrease or increase; the sense along
which it is assumed to increase defines the sense of the travel from past to
future, namely the time arrow. Since the geodesic equation (3.1) is quadratic
in the line element, fixing the time arrow of the individual geodesic is a
matter of choice. The second postulate deals with our ideas of causation,
and establishes a relation between the time arrows of neighbouring geodesics.
Synge calls it the non-circuital postulate. It asserts that there cannot exist
in space-time a closed loop of time-like geodesics around which we may travel
always following the sense of the time-arrow.

Synge was the first to show in detail [23] that the time arrow can be
drawn in keeping with the aforementioned postulates in the maximally ex-
tended manifold that he obtained from the Hilbert manifold with his sin-
gular coordinate transformation; the same property obviously holds in the
Kruskal-Szekeres manifold too. Does it hold also in the Hilbert manifold?
A glance to Figure (1a) is sufficient to answer the question in the negative.
The arrow of time can be drawn in keeping with Synge’s two postulates of
order and of non-circuitality in the submanifold with 2m < r < +∞, i.e. in
Schwarzschild’s original manifold, and separately in the inner submanifold
with 0 < r < 2m. A consistent drawing of the arrow of time, in keeping
with both postulates, is however impossible in Hilbert’s manifold as a whole.
This is an intrinsic flaw of the latter manifold, originating from the abrupt
change in the Killing group structure that occurs at the crossing of the sur-
face r = 2m, where the unique, hypersurface-orthogonal, timelike Killing
vector suddenly becomes spacelike. It has nothing to do either with the fact
that in Hilbert’s chart the metric is not defined at r = 2m, or with the fact
that in it the timelike geodesics appear to cross the Schwarzschild surface
at the coordinate time t = ±∞; it is a flaw that cannot be remedied by
any coordinate transformation, however singular at r = 2m, but one-to-one
elsewhere.

The only known ways to overcome this flaw of Hilbert’s manifold are
either by eliminating the inner region, thereby reinstating the choice of the
original manifold [20], deliberately made by Schwarzschild as a model for the
gravitational field of a material particle, and later confirmed by the study of
the Killing group structure [27], or by completely renouncing the one-to-one
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injunction on the coordinate transformations once set, on physical grounds,
by Einstein [11] and by Hilbert [3].

The second alternative is the one chosen by Synge and his followers: in
fact, not only Schwarzschild’s original manifold, but also Kruskal’s manifold
avoids the flaw of the arrow of time present in Hilbert’s manifold. Moreover,
it appears to preserve its inner region, for which 0 < r < 2m. However, it
does so by a coordinate transformation that duplicates the original manifold
and alters its topology, in a way that is best explained, rather than by
looking at the equations for the transformations, through a straighforward
cut-and-paste procedure applied to two Hilbert manifolds.

r=2m

(a)

t r=2m

cut r

(b)

time's arrow

time's arrow

time's arrow

time's arrow

time's arrow

time's arrow

t

A C

B

time's arrow

time's arrow

time's arrow

time's arrow

r

time's arrow

time's arrow

Figure 1. (a): Drawing of Hilbert’s manifold in the r, t plane. Light

cones are drawn both for r < 2m and for r > 2m. Time arrows are

drawn in agreement with the non-circuital postulate. Then the postulate

of order happens to be violated. (b): Hilbert’s manifold is cut along

AC . The topologically different manifold obtained in this way allows

for a drawing of the time arrow in keeping with both Synge’s postulates.

This procedure can be made in infinite ways, all entailing the same change
of topology. One of them is accounted for in the sequence drawn in Figures
(1b), (2a) and (2b) respectively. In Figure (1b) the inner region of the
Hilbert manifold of Figure (1a) is cut along the line AC of the r, t diagram.
The resulting manifold is topologically inequivalent to the Hilbert manifold.
The topological alteration already allows to draw the arrows of time in
keeping with both Synge’s postulates but, due to the existence of the border
ACB, the new manifold is evidently unphysical. However, if one takes two
manifolds identical to the one of Figure (1b), juxtaposes them as it is shown
in Figure (2a), and eventually sews together the borders ACB and A′C ′B′

like in Figure (2b), one obtains a manifold equal to Kruskal’s manifold,
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v

u

r=2m

r=2m

r=2m r=2m
        

r=2m

A

B

C

A'

B'

C'

r=0

r=0

t
r=2m

cut r

time's arrow

time's arrow

time's arrow

time's arrow

A C

B

t
r=2m

cutr

time's arrow

time's arrow

time's arrow

time's arrow

A'C'

B'

(a)
(b)

time's arrow

time's arrow time's arrow

time's arrow

Figure 2. (a): Two manifolds, equal to the Hilbert manifold cut

along ACB and A′C ′B′ in Figure (1b) are juxtaposed for suturing;

(b): sewing together the edges ACB and A′C ′B′ produces Kruskal’s

manifold, that fullfils both Synge’s postulates.

and ascertains that the arrows of time inherited from the two component
manifolds with the cut still obey both Synge’s postulates.

Only the topological alteration, drawn in the Figures, that leads from
the Hilbert manifold to the Kruskal manifold remedies the flaw of the time
arrow due to the coexistence, in the Hilbert manifold, of two submanifolds
with a different Killing group structure.

8. Conclusion

The relation between relativity and invariance was clarified long ago by
the work of Felix Klein [4],[5] and his result constitutes a paradigm that
goes beyond the limits of special relativity theory. Einstein’s idea, that one
should introduce general transformations between curvilinear coordinates
was fundamental from a mathematical standpoint, since it allowed one to
avail of the powerful methods of the absolute differential calculus of Ricci
and Levi-Civita [9]. However, the physical idea by Einstein [11], that cer-
tain curvilinear coordinates should be availed of to account for non-inertial
reference frames, as required by the early form of the equivalence principle,
did not resist the criticism by Kretschmann [6]. General curvilinear coordi-
nates are very useful mathematical tools, but they are physically vacuous.
The group of general covariance is physically vacuous too. By following the
ideas of Klein and Kretschmann, one shall trace, in general relativity like in
special relativity, the physically meaningful group of invariance. The Killing
group of infinitesimal “Mitschleppen” of the metric tensor is such a group.
In a general solution of the field equations of 1915, the Killing group is triv-
ial, and general relativity then behaves like an absolute theory. However,
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solutions with Killing groups that are intermediate between the trivial one
pertaining to an absolute solution and the infinitesimal Poincaré group do
exist. Their scrutiny is fundamental for assessing the very structure of the
manifolds from a physical standpoint. When this scrutiny is applied to the
Schwarzschild solution, it turns out that only the manifold originally chosen
by Schwarzschild [20] survives. Other manifolds, like the ones chosen by
Hilbert [21], and later by Synge [23], by Kruskal [24] and by Szekeres [25]
with their maximal extensions cannot survive the scrutiny, because they
contain a local, invariant, intrinsic quantity that diverges in their interior.
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neue und seine ursprüngliche Relativitätstheorie, Annalen der Physik 53(1917)., 575-614
(title in English: On the physical meaning of postulates of relativity; A.Einstein’s new
and his original theory of relativity).

[7] Noether, E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Göttingen, Math. Phys.
Kl. 1918, 235-257 (title in English: Invariant variational problems).

[8] Landau, L. i Lifshic, E., Teoriya polya, Izd. Nauka, Moskva 1967 (title in English: The
Classical Theory of Fields).
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