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Abstract. We shall study the geometrical properties of the static Ein-
stein spaces with null points of the determinant g introduced in the first
part. It results in particular that these Einstein spaces are incomplete.
It will be further shown that nothing essentially changes, with respect
to the results of the first part if, instead of vacuum gravitational fields,
one considers gravitational fields coupled with material fields. - Physi-
cal consequences will be discussed, that result from the global structure
of the incomplete V4. The static incomplete V4 with null points of g
prove to be field theoretical models of pointlike particles in the sense of
Einstein.

1. The signature of space as field function

In a previous work of H. Treder1, the signature s of the physical space-
time manifold V4 is considered as a field function, that can have a different
character from place to place. Since the signature s is given by the dif-
ference between the number of negative and of positive eigenvalues of the
metric tensor gµν , s is necessarily a discontinuous function. In I it has been
proposed in particular to assume as interior of a particle a spatially limited
region (cylinder in V4), in which V4 is endowed with a negative definite met-
ric. The index of inertia then reads (−1,−1,−1,−1) and the signature turns
out to be s = −4. Outside a particle it holds the usual signature s = −2 of
Lorentz and Minkowski, with the index of inertia (−1,−1,−1,+1).

Inside the particle the determinant g of gµν is therefore positive, and
outside it is g < 0. Due to the requirement of continuity for gµν , it exists a
hypersurface S that divides the internal region from the external one, and
on which g vanishes. On S the index of inertia reads (−1,−1,−1, 0) and we
have a semidefinite metric with s = −3. - S represents the hystory of the
surface of the particle.

We give to S the representation z(xν) = 0; we denote the interior of
the particle with z < 0, and the exterior region with z > 0. Then the

Translation by S. Antoci of the paper: Gravitationsfelder mit Nullstellen der Determi-
nante der gµν . II, Annalen der Physik (7), 12, 195-208 (1962). (Received by the Editor
on January 10th, 1963.)

1H. Treder, Ann. Physik (7), 9, 283 (1962). Cited in the following as I; see also
H. Treder in Proceedings of the Jablonna Conference on General Relativity, Warsaw (in
print).
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discontinuous field function s has the following behaviour:

(1) s = −2 for z > 0, s = −3 for z = 0, s = −4 for z < 0.

It has been shown in I that the null points of g on S do not constitute a
singularity of Einstein’s vacuum equations. On the contrary, these equations
are satisfied in the sense of a limit also at null points of g of finite (n-th)
order. If conditions are imposed on the form of S, from Einstein’s equations
follow conditions for the possible ways of vanishing of g.

If these conditions give that it must be n = 2m (m = natural number),
also for z < 0 it is g < 0, and we have a V4 that, apart from the hypersurface
S, where g vanishes, is endowed with the Minkowski signature s = −2. As
remarked in I, in this case we shall pose z ≡ %, we shall interpret % as radial
coordinate and % = 0 as the origin of a system of radial coordinates, so that
there is no region with z < 0.

We thus obtain a field theoretical model of a point particle in which,
according to Einstein’s proposal2, the worldline of the particle is represented
by the line g = 0.

Both the case g ≥
<

0 and the case g ≤ 0 will provide the geometry of

particle models in the sense of Einstein’s program3: regions with strong
gravitational fields are substituted either for discrete material distributions,
or for the delta-like field singularities of equivalent meaning, hence in general
for regions in which the field equations are not satisfied. - Since, according
to Sylvester’s theorem of inertia, the signature s of V4 cannot be changed
by any regular, real transformation of coordinates, in our hypothesis the
extreme strength of the gravitational field is an invariant property with
respect to all the regular transformations. - In the region with g ≥ 0 the
gravitational field deviates totally from the Minkowski space, since not even
in the infinitesimal neighbourhood of a world point P it can be brought to
the form gµν = ηµν + small terms, where

ηµν =


−1

−1
−1

+1


is the Minkowski tensor.

In a V4 with the usual Minkowskian signature Einstein’s idea, namely
substituting strong gravitational fields for the particles, strikes against a
peculiar difficulty, that cannot be overcome at least for point particles: by
constructing Fermi coordinates one can get gµν = ηµν along the woldline
xν = xν(τ) of the “particle”, thereby wholly eliminating the gravitational

2A. Einstein and N. Rosen, Physic. Rev. 48, 73 (1935); A. Einstein, Jour. Franklin
Inst. 221, 313 (1936).

3see for instance A. Einstein, Philosopher-Scientist, New York 1951, p. 81; A. Einstein,
The Meaning of Relativity, Princeton 1955, pp. 163-166.
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field for xν = xν(τ). - This difficulty does not exist in a model for which the
worldline of a point particle is given by g = %2m=0. When g = 0, gµν = ηµν

(xν = xν(τ)) is not reachable through any regular transformation.
In I static vacuum fields with null points of g have been studied. We have

there dealt with the following geometrical problem:
The Einsteinian V4 possesses a Killing vector ξµ, that will define a family

of subspaces V3. ξµ is timelike in the region of V4 where the Minkowski
signature holds. The subspaces V3 are the usual three-dimensional spaces
(i.e., for g < 0, V4 is static in the sense of Levi-Civita). It exists a family
S′ of hypersurfaces (timelike for g < 0) on which ξµ lies. These surfaces S′

are closed in two dimensions, hence they are spatiotemporal cylinders. - At
a surface S of the family S′, however, ξµ becomes a null vector, and inside
S it will become spacelike.

Since the subspaces V3 will have a negative-definite metric, on S there
are no timelike directions, and only one null direction, which is the direc-
tion of the Killing vector. The signature of S is s = −3 with the index
(−1,−1,−1, 0). Inside S there are only spacelike directions. Under these
hypotheses, in keeping with I, the metric in proximity of S can be specialised
as:

(2) gµν = gµν(xi) i = 1, 2, 3,

(3) gi4 = 0, |gik| < 0.

We pose further

(4) z(xν) = f(xi) = x1.

Then, according to the hypotheses

(5) g = |gik|g44 = |gik|x1=0

(
αn(x2, x3)(x1)n + · · ·

)
,

i.e. due to (3):

(6) g44 = αn(x2, x3)(x1)n + · · ·.
Furthermore, we can also obtain

(7) g1a = 0, a = 2, 3.

Since we require that g and hence g44 have everywhere on S a zero of
order n, we can also pose in particular:

(8) g44 = (x1)n.

The general form (6) is a physically inessential complication. If αn in (6)
vanishes everywhere, instead of (8) one poses simply

(9) g44 = (x1)n′
, n′ = n+ 1.

If instead αn(x2, x3) = 0 has discrete solutions xa = ca, the subsequent cal-
culations (§§2 and 3) hold everywhere, except for the corresponding points,
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for which the final result: “The static V4 is incomplete and describes point-
like particles (with constant xa)” does not apply. - In I it has been shown
that from the Einstein vacuum equations it follows g44 = (x1)2 = %2.

In §2 we shall extend the calculation of I to the case when, besides the
static gravitational field gµν(xi), an electromagnetic field Fµν , spinor fields
and scalar meson fields exist too. Furthermore we shall assume that these
fields are mutually coupled in the usual manner. We require that all the
covariant field quantities shall be limited. On the contrary, the contravariant
ones can be unlimited for x1 → 0, when they result from the covariant ones
through raising with g44. We shall then see that the Einstein equations

(10) Eµν ≡ Rµν −
1
2
gµνR = −κTµν

give n = 2 also in this case, hence the particles are pointlike and one must
pose x1 ≡ %.

At first sight the equations (10) have no meaning for g = 0. In fact the
Ricci tensor Rµν contains terms ∼ g−2 and R = gστRστ terms ∼ g−3, hence
the Einstein tensor Eµν can diverge like g−3 for x1 → 0. Nevertheless (like
in I) the field equations (10) hold on S in the sense of a limit. - If we assume
(as it happens through the choice of the field sources), that Tµν diverges at
most like g−3, we can substitute for (10) an equation of the Einstein-Rosen
type:

(11) g3 (Eµν + κTµν) = 0.

The density g3Eµν is defined also for g → 0. - If Tµν would diverge like g−p

- with p > 3 - instead of (11) we should simply write

(12) gp (Eµν + κTµν) = 0.

Equation (11) holds now both on S and in a finite layer on both sides of S,
hence in a region −ε ≤ x1 ≤ +ε. With the assumption g ∼ (x1)n, that is
always possible when g vanishes with a finite order, according to l’Hôpital’s
rule we can form the limit

(13) lim
x1→0

(Eµν + κTµν) = lim
x1→0

 ∂3n

∂(x1)3n

[
g3 (Eµν + κTµν)

]
∂3n

∂(x1)3n g3

 .

Hence (11) holds also in the position x1 = 0, if it holds for x1 > 0 and for
x1 < 0.

Since the inner region g ≥ 0 does not contain any timelike direction, no
particle can enter the inner region from the outer one. Inside the inner
region all the reactions happen instantaneously without retardation. Hence
the inner region g ≥ 0 is both a “black sphere” and an ideal “rigid body” of
the classical mechanics.

Geometrically it is relevant that, due to the nonexistence of a timelike di-
rection, no timelike geodesics can enter the region g ≥ 0. Timelike geodesics,
that come arbitrarily close to the surface (or curve) x1 = 0, must approach
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it asymptotically. - In §3 we shall show that this has for consequence that
the V4 determined in I and in §2 are incomplete manifolds, since in them
there are timelike geodesics with a finite branch.

If such a geodesic is the worldline of a test particle, this fact means, for
an observer at infinity, absorption or irregular diffusion of the test particle
(see §3).

The results of I and of §§2 and 3 allow for some general remarks over
the meaning of incomplete V4 for Einstein’s particle problem, that will be
discussed in §4.

2. The general static field

We shall show now that, for static gravitational fields, for which the mat-
ter tensor Tµν corresponds to the known physical fields, the determinant of
gµν must have a null point of second order on the hypersurface S. For the
field intensity Fµν of Maxwell’s field and for the spinor fields ψ we admit as
usual single continuous differentiability, and for the meson fields ϕ twofold
continuous differentiability.

One gets simplifications for gµν from the existence of the one-dimensional
symmetry group with hypersurface orthogonal Killing vector. We can avail
here of the results of I. In I (§3, equations 22, 28, 29, 30, 31 and §1, equation
8) gµν and gµν can be written in the following form:

(14) gi4 = 0, gi4 = 0, g44 =
1
g44

, g11 =
1
g11

6= 0,

(15) gik =

 g11 0 0
0 g22 g23
0 g23 g33

 , gik =

 g11 0 0
0 g22 g23

0 g23 g33

 ,

(16) g44 = (x1)n.

We shall further assume that |gik| 6= 0. Then the only component of the
gravitational potential that has a pole on S is g44.

With the abbreviations g44 = V 2 and |gik| = −γ2 we get for the Ricci
tensor:

R44 =
V

γ

(
gikγV,i

)
,k

= 0, Ri4 = 0,

Rkl = Pkl +
1
V

(
V,kl − Γi

klV,i

)
.(17)

Here Pik denotes the three-dimensional Ricci tensor, formed with gik. - We
shall deal in the following with Einstein’s equations in presence of matter:

Eµν = −κTµν .
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We first calculate Einstein’s tensor by starting from (17). We get from (17),
with the form of gµν given by (14), (15), (16):

(18) R = gklRkl + g44R44 = P +
2gmn

V

(
V,mn − Γi

mnV,i

)
,

where P = gklPkl. We avail here of the relation

1
γ

(
gikγ

)
,k

= −gklΓi
kl.

From (17) and (18) it results for Eµν :

(19) E44 = −1
2
PV 2, Ek4 = 0,

(20) Ekl = Pkl −
1
2
gklP +

1
V

(
V,kl − Γi

klV,i − gmngklV,mn + gklg
mnΓi

mnV,i

)
.

We shall assume that Tµν , the matter tensor of the known physical fields
(Dirac’s fields, scalar meson fields, Maxwell field), has the usual couplings.
Tµν is derivable from a Lagrange function that can be written as follows:

L = −1
4
FµνF

µν + gµν
∑

j

[
D∗

(µϕ
∗
jDν)ϕj +

1
2
∇(µϕ

0
j∇ν)ϕ

0
j

]
+
i

2
gµν

∑
N

[
ψNγ(ν∇µ)ψN −∇(µψNγν)ψN

]
+
i

2
gµν

∑
P

[
ψPγ(νDµ)ψP −D∗

(µψPγν)ψP

]
−
∑

j

ϕ∗jϕjm
2
j −

∑
j

m02
j

2
ϕ02

j

−
∑
P

µPψPψP −
∑
N

µNψNψN +W.(21)

Fµν = Aν,µ − Aµ,ν is the electromagnetic field. ∇µ is the operator of co-
variant differentiation, and Dµ = ∇µ− ieAµ the operator of gauge invariant
differentiation (one shall care about the fact that ∇µ takes a different mean-
ing according to the kind of field quantity over which ∇µ operates). The γµ

are Dirac’s spin matrices, with {γµ, γν} = 2gµν . The ϕj (resp. ϕ0
j ) mean

the different scalar fields, respectively charged and neutral. mj , m0
j , µN and

µP are the masses of the corresponding particles. In (21) we have further
assumed that the scalar fields and the Dirac fields are mutually coupled in
the usual way. These couplings (Yukawa coupling of the form ψγ5τ%ψϕ%

and universal Fermi coupling of the form ψ(1 + γ5)ψBψC(1 − γ5)ψD) are
indicated in (21) with the term W , independent of gµν .
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The variation of L =
√
−gL with respect to gµν yields, with an elementary

calculation:

(22)
√
−gTµν =

2δL
δgµν

=
√
−g
(
2Gµν − F α

µ Fνα − gµνL
)
.

Here Gµν is given by4

Gµν =
∑

j

[
D∗

(µϕ
∗
jDν)ϕj +

1
2
∇(µϕ

0
j∇ν)ϕ

0
j

]
+
i

2

∑
N

[
ψNγ(ν∇µ)ψN −∇(µψNγν)ψN

]
+
i

2

∑
P

[
ψPγ(νDµ)ψP −D∗

(µψPγν)ψP

]
.(23)

With the abbreviation

G0 = −
∑

j

(
ϕ∗jϕjm

2
j +

m02
j

2
ϕ0

j
2

)
−
∑
P

µPψPψP −
∑
N

µNψNψN +W,

from (19), (20), (21), (22) and (23), by taking into account (14), (15), one
gets the following field equations for the gravitational field:

E4
4 = −1

2
P

= −κ
(

2g44G44 − F4sF4rg
srg44 −

[
G0 + gµνGµν −

1
4
FµνF

µν

])
,(24)

El
k = grlEkr = grlPkr −

1
2
δl
kP + grl 1

V

(
V,kr − Γi

krV,i

)
−δl

k

1
V
gmn

(
V,mn − Γi

mnV,i

)
= −κT l

k,(25)

with

T l
k = 2grlGrk − grlFrσFkαg

ασ

−δl
k

(
G0 + gµνGµν −

1
4
FµνF

µν

)
,(26)

and

(27) E4
k = Ek

4 = −κT 4
k = −κT k

4 = 0.

We shall now compare the singular terms at x1 = 0. We shall write always
only the divergent terms of (24), (25). We avail of the fact that G0, Aµ,
Fµν and gkl cannot contain any singularity, since the covariant fields are by
hypothesis limited for x1 = 0 and g44 = 1/V 2 is, according to (14), (15),
(16), the only singular term.

4Equations (22), (23) are very easily verified with the help of the equivalence principle,
by starting from the form of Tµν that holds in special relativity, and then by writing it in
covariant form.
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By covariant differentiation of the spinors ψ, Gµν can instead contain
further singular terms. One has

(28) ∇νψ ≡ ψ,ν − Γνψ.

The Γµ are the coefficients for the parallel transportation of spinors, for
which one has:

(29) γµ,ν − Γ%
µνγ% + [γµ,Γν ] = 0.

We shall choose the γµ in a particular way, so that they can be obtained5

from the Dirac matrices γ0
µ of special relativity according to

(30) γµ = aν
µγ

0
ν .

From (14) and from gµν,4 = 0 one gets Γ4,il = Γi,4l = 0. Furthermore we
have from (14), (15) and from (30)

(31) γ4 =
√
g44γ

0
4 ,

by keeping into account that {γµ, γν} = 2gµν . From (29) with ν = l one
gets:

(32) 0 = [γk,Γl] + γk,l − Γi
klγi,

(33) 0 = [γ4,Γl] + γ4,l −
1
2
g44,lγ

4 = [γ4,Γl].

From this it follows immediately that Γl must be limited up to a vector
that commutes with all the γµ, because Γl is defined by quantities that are
limited for x1 = 0 (we set equal to zero the undetermined vector in Γν ,
since we deal separately with the electromagnetic potential Aµ, according
to the distinction between charged and neutral Dirac fields.). From (29) one
instead gets for Γ4:

(34) 0 = [γk,Γ4]−
1
2
g44g44,kγ4,

(35) 0 = [γ4,Γ4]− Γi
44γi.

One sees that Γ4 must behave like (x1)(
n
2
−1) for x1 → 0; hence, for n < 2 it

can diverge when x1 = 0.
Therefore, while the terms Gkl are limited, due to its dependence on Γ4

we must keep into account G44 in the comparison of the terms that are
singular for x1 = 0. From (24), (25) it follows:

(36) E4
4 = −1

2
P = −κT 4

4 ∼ −κ
(
−1

2
F4kF4rg

krg44 + g44G44

)
∼ −κL,

5see V. Bargmann, Berliner Berichte 1932, p. 346.
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(as one can see, we must consider G44 also due to the term G4
4 = g44G44.)

Ek
l ∼ g1l 1

V

(
V,k1 − Γi

k1V,i

)
− δl

kg
11 1
V

(
V,11 − Γi

11V,i

)
+gal 1

V

(
V,ka − Γi

kaV,i

)
− δl

kg
ab 1
V

(
V,ab − Γi

abV,i

)
∼ −κT l

k,(37)

where
T l

k ∼ −grlFk4Fr4g
44 − δl

kL.

Since E4
4 is evidently limited, due to (36) the expression δl

kL in T l
k is limited

and one gets, as divergent term of T l
k:

(38) T l
k ∼ grlFk4Fr4g

44 ∼ grlFk4Fr4(x1)(−n).

Now, for x1 = 0, g44 = 1/V 2 has a pole of order n. Hence V,1/V contains
a pole of first order and V,11/V contains a pole of second order. From (37)
one sees that, for l 6= k, in El

k appear only first derivatives of V with respect
to x1, and in this case El

k has at most poles of first order. Also E1
1 contains

at most poles of first order, because the terms with V,11/V cancel exactly.
E2

2 and E3
3 have instead poles of second order, with the form:

(39) E2
2 ∼ E3

3 ∼ −V,11

V
g11 ∼ −n

2

(n
2
− 1
)

(x1)−2g11.

Thanks to (37), (38), the comparison between E1
1 and T 1

1 shows that F14

must have a zero of order % ≥ n−1
2 , because E1

1 for x1 = 0 has at most a pole
of first order. Given the form of E3

2 and of E2
3 , also T 3

2 and T 2
3 can have at

most poles of the first order. Due to (38) one therefore obtains:

(40) F34

(
g22F24 + g23F34

)
= 0 of order %1 ≥ n− 1,

(41) F24

(
g23F24 + g33F34

)
= 0 of order %2 ≥ n− 1.

Since, due to (14), (15), and to |gik| 6= 0, one has also |gab| 6= 0, from (40),
(41) it follows that F24 and F34 must present zeros of order %

(
% ≥ n−1

2

)
.

But for T 2
2 (and similarly for T 3

3 ) due to (38) this means:

(42) T 2
2 ∼

1
V 2

(
g22F24F24 + g23F34F34

)
∼ (x1)2%−n = (x1)α−1, α ≥ 0.

Therefore also T 2
2 and T 3

3 have at most a pole of first order. E2
2 and E3

3

contain instead a pole of second order. Because the latter vanish, since
g11 6= 0 and since (39) holds, it must be

(43)
n

2

(n
2
− 1
)

= 0, i.e. n = 2 (n = 0 too).

Static solutions of Einstein’s field equations with a matter tensor for the
physical fields can therefore contain only hypersurfaces S on which g vanishes
to second order.

We notice now that, since the Fµν and their first derivatives are limited
by hypothesis, the null points of the components Fk4 must have an order
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% ≥ 1. The latter result follows also directly from Maxwell’s field equations,
if we observe that the current jµ is finite, because it entails only covariant
quantities. From

F[a4,1] = 0,
since Fa1,4 = 0, it turns out that the null point of Fa4 must be of order % ≥ 1,
because F14,a has a zero for x1 = 0 and hence it is limited. Furthermore

gµνFµ4;ν = j4 = g11F14;1 + gabFa4;b

cannot be singular, and F14 must have a zero of order % ≥ 1. By inserting
this result in T l

k (38), one immediately sees (with V 2 ∼ (x1)n, n = 2) that
no first order poles appear in T l

k, hence they must be mutually compensated
in El

k. Therefore in general the El
k are finite for x1 = 0.

Now, in the derivation of equations (52), (53) and (54), (55) of I, it has
only been availed of the fact that Rµν is finite. These formulae hold here
too, and with the hypothesis (16) one finds again:

(44) Γ1
ab = −1

2
g11gab,1 = α1

1 ab(x
2, x3)x1 + · · ·.

Furthermore, according to I (54), (55):

(45) Γ1
1a = α1

1 1a(x
2, x3)x1 + · · ·,

(46) Γ1
11 = α1

1 11(x
2, x3)x1 + · · ·.

Since g11 6= 0, from here it follows:

(47) gab = α0 ab(x2, x3) + α2 ab(x2, x3)(x1)2 + · · ·
and

(48) g11 = const. + α2 11(x2, x3)(x1)2 + · · ·.
Therefore all the derivatives gµν,1 vanish like x1 for x1 → 0. Hence the
introduction of the matter fields does not entail any new result with respect
to the case of the vacuum dealt with in I.

3. The incompleteness of the spacetime manifold with null
points of g

We show that from the structure of gµν found in I and in §1 it follows:
If a static metric fulfills Einstein’s field equations for vacuum, then due to

the null point of the determinant of gµν the space is necessarily incomplete,
i.e. timelike geodesics exist with a finite branch6. A test particle that
moves along such a geodesic, and hence is endowed with a finite rest mass,
reaches the hypersurface S in a finite proper time, corresponding to an
infinite system time. The test particle leaves the physical V4. - The same
result occurs also when the equations of §2 hold instead of the vacuum
equations.

6see W. Rinow, Deutsche Mathematik, 1, 46 (1936).
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For the sake of a simplified treatment of the problem we shall deal first
with the particular case of the vanishing of g in a regular, spherically sym-
metric vacuum metric (Einstein-Rosen spacetime7). According to §1 it can
be cast into the form

(49) ds2 = g11d%2 + g22
(
dϑ2 + sin2 ϑdϕ2

)
+ %2dt2.

g11 and g22 are functions of % only. They are continuous, limited and non-
vanishing on the hypersurface % = 0. One has

g = g11(g22)2%2 sin2 ϑ, |g|%=0 = 0, g11 < 0, g22 < 0.

Since the metric does not depend on time, the equations of the geodesics
have the first integral

(50) %2 dt
dτ

= β = const. 6= 0;

dτ2 = ds2 for timelike geodesics. Due to the spherical symmetry, there are
geodesics with ϑ = const., ϕ = const.; then the normalisation condition
gives:

(51) g11

(
d%
dτ

)2

+ %2

(
dt
dτ

)2

= 1.

By keeping into account (50) and by solving one obtains:

(52)
dτ
d%

= %

√
g11

%2 − β2
,

(53)
dt
d%

=
β

%

√
g11

%2 − β2
.

Since β2 > 0, the inequality β2 − %2 > 0 holds in a finite neighbourhood of
the hypersurface % = 0. Therefore dτ

d% has a zero and dt
d% has a pole of first

order for % = 0. Hence

(54) τ1 − τ0 =
∫ %1

0
%d%

√
g11

%2 − β2

is finite, while

(55) t1 − t0 =
∫ %1

0

βd%
%

√
g11

%2 − β2

diverges. Therefore the timelike geodesics in a spatial radial direction have
a branch of finite overall length.

For a generic static field (in vacuum or in presence of scalar, spinor and
Maxwell fields), on the basis of the field equations, according to I and to the
equations (14), (15), (16), in the neighbourhood of S the series expansion
for the gµν reads:

g11 = α0 11 + α2 11(x2, x3)(x1)2, g44 = (x1)2.

7A. Einstein and N. Rosen, l.c. in footnote 2.
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Therefore both g11,a and g44 have a zero of second order for x1 = 0. The
equations of the geodesic line still have the first integral:

(56) (x1)2
dx4

dτ
= β > 0.

For timelike geodesics it holds now the normalisation condition
(57)

g11

(
dx1

dτ

)2

+ gabu
aub = − β2

(x1)2
+ 1,

(
ua =

dxa

dτ
, ub = gbµu

µ = gbau
a

)
.

By solving for dx1

dτ one finds

(58)
dx1

dτ
=

√
1
g11

(
1− β2

(x1)2
− gabuaub

)
.

By putting x1 in evidence as parameter one gets:

(59)
dτ
dx1

= x1

√
−g11
N

,

(60)
dt
dx1

=
β

x1

√
−g11
N

,

with N =
(
β2 − (x1)2 + (x1)2gabu

aub
)1/2. Due to the normalisation and

since g11, gab < 0 one has

(61) 0 ≤ |N | ≤ |β|.
Equations (59), (60) have the same consequence as (52), (53), if one can
show that there are geodesics with 0 < |N |. To this end it is sufficient that
gabu

aub remain finite.
The equations for ua read:

(62)
dua

dτ
− 1

2
g11,a

(
dx1

dτ

)2

− 1
2
gbc,au

buc = 0,

(63)
dua

dτ
− 1

2
g11,a

g11

[
1− β2

(x1)2
− gbcu

buc

]
− 1

2
gbc,au

buc = 0.

This is a regular system of differential equations for ua, since g11,a has a zero
of second order for x1 = 0. Because there exist geodesics that satisfy the
initial conditions ua = 0 arbitrarily close to the hypersurface x1 = 0, there
exist geodesics with finite ua and hence with finite gabu

aub. Due to (59),
(60)

(64) τ1 − τ0 =
∫ a

0
dx1 dτ

dx1

is then finite, and

(65) t1 − t0 =
∫ a

0
dx1 dt

dx1
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is divergent. Therefore the existence of timelike geodesics with a finite
branch is warranted.

According to what has been told in §1, x1 = % must be interpreted as a
radial coordinate; the xa(a = 2, 3) can be interpreted as angular coordinates.

Let us consider now a test particle moving along a geodesic that enters
the region around % = 0. For small %, ua is limited; therefore |N | > 0, and
the worldline of the test particle is a geodesic with a “finite branch”. The
particle asymptotically approaches the worldline % = 0, without reaching it
in a finite system time, while it abandons V4 in a finite proper time. For an
observer at infinity, for whom the system time is coincident with his proper
time, the test particle will then be absorbed by the particle of finite mass,
represented by g = 0.

If N has a zero for % = 0, ua must diverge like 1/x1. The particle ap-
proaches the worldline % = 0 asymptotically, and in the three-dimensional
space it describes a spiral that asymptotically approaches % = 0. The an-
gular velocity then obviously diverges also with respect to the system time.
Since the particle does not go far again from % = 0, for an observer staying
at infinity, it is absorbed too. But also the proper time of the particle can
diverge, hence in this case the branch of geodesic does not have a finite
overall length.

If N has a zero for x1 = ε, where ε > 0 is a small number, there it is
dx1/dτ = 0 due to (58). When d2x1/dτ2 6= 0 the particle may invert its
path in this point. But if ua is very large, it describes in a finite proper
and system time a spiral around % = 0, before getting again far from the
neighbourhood of % = 0.

One understands that the vanishing of g and the consequent incomplete-
ness of V4 can be recognised in principle through diffusion experiments:
when the region with higher gravitational field strength is entered, i.e. the
neighbourhood of % = 0 is reached, one observes absorption and irregular
diffusion of the test particle, that do not happen in a complete spacetime
manifold.

Therefore in principle, through diffusion experiments, it is possible to
distinguish between a complete form of a spherically symmetric gravitational
field and the Einstein-Rosen space, although all the spherically symmetric
Einstein spaces are locally isometric8.

4. Conclusions

We have seen in §2 that also for static gravitational fields, that are cou-
pled with matter, only zeros of second order of g on S are possible. These

8On the complete Schwarzschild field see M. Kruskal, Physic. Rev. 119, 1743 (1960).
Through diffusion experiments it should be possible in principle to tell apart also the
Einstein-Rosen metric from the usual Schwarzschild metric, because the Einstein-Rosen
space and the Schwarzschild space are endowed with a different global structure.
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spaces describe always pointlike particles without an internal structure. S
degenerates to a worldline.

It is consequent to consider now spaces exhibiting time-dependent gravi-
tational fields. In fact only with a dependence on time a change of signature
can really be effected in the region with g ≥ 0. For gravitational fields
not dependent on time Einstein’s equations are everywhere elliptic (in three
dimensions). In the time-dependent case, they are hyperbolic in three di-
mensions in the external region with g < 0, s = −2. They are parabolic
for g = 0, s = −3. For g > 0, s = −4 they are elliptic equations in four
dimensions.

A difficulty of principle in dealing with time-dependent gravitational fields
with regions where g ≥ 0 (s = −4,−3) is the invariant definition of the
hypersurfaces S on which g vanishes. - Our definition of S in I and in
§1 presupposes the existence of a timelike Killing vector for g < 0. - But
if S is not introduced in an invariant way, there is no problem, through
a transformation aptly nonregular for x1 = 0 (with xν = xν(xµ) possibly
complex for x1 < 0) in bringing always a regular, locally static field gµν with
g 6= 0 in the form

(66) g00 = (x1)n, gi0 = 0, n > 1,

(67) gik = gik(x
ν) with |gik| 6= 0,

as one easily gathers from the transformation formulae for the gµν . - One
interprets the xν as the regular coordinates that define the metric topology
of V4, and gµν is a regular gravitational field with null points of g.

For fields periodic in time an invariant, also physically privileged definition
of S appears possible, because in this case a time direction is privileged too.
For these fields one can obtain

gµν(xi, x4) = gµν(xi, x4 +mT )

with m = integer number, T = period. - But due to the results of Papa-
petrou9 in the weak field region no field periodic in time is compatible with
Einstein’s vacuum equations, and the periodicity in time must be limited
to a finite spatial region. According to Papapetrou and Treder10 the latter
must be separated from the external field, not dependent on time, by a null
surface Σ, “globally isolated”. Within Σ the gravitational field is strong and
S must stay within Σ.

The results of §3 appear to be of fundamental meaning. The incomplete-
ness of the static Einstein spaces with the hypersurface S degenerated in a
worldline g = 0 allows for the existence of everywhere regular static solu-
tions, that asymptotically coincide with the space of Minkowski, and that

9A. Papapetrou, Ann. Physik (6), 20, 399 (1957).
10A. Papapetrou and H. Treder, Ann. Physik (7), 3, 360 (1959).
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describe particles endowed with rest mass11. The known proof of the nonex-
istence of such solutions by Einstein and Pauli, R. Serini and A. Lichnerowicz
is in fact directly based on the hypothesis of completeness for the spacetime
manifold12,13.

If we have a regular, static Einstein space V4 with boundary conditions
(when one maintains all the other usual topologic hypotheses), then it is
incomplete and, in keeping with Einstein’s proposal, the particles are rep-
resented through a worldline g = 0. The completion of V4, i.e. the in-
troduction of a new space V ∗

4 , locally isometric to V4 - except along the
worldline g = 0 - that is everywhere endowed with the indefinite signature
s = −2, necessarily brings to the fact that V ∗

4 contains a worldline on which
Einstein’s equations are not satisfied, because it appears on it a singular
(delta-like) matter distribution.

From §§1 and 2 it follows that V4 and V ∗
4 , despite their local isometry,

due to their different global structure have distinct physical properties, that
can be recognised through diffusion experiments.

In general, within Einstein’s particle problem, the following program for
a field-theoretical model of discrete matter (particles) appear possible.

A complete V ∗
4 with discrete matter distribution is assumed. In it finite

spatial regions with Rµν 6= 0 are present; elsewhere one has Rµν=0. The gµν

have the index of inertia (−1,−1,−1,+1) and asymptotically approach the
Minkowskian values. - One now defines an incomplete V4 in such a way that
V4 is an Einstein space with regular gµν , locally isometric to V ∗

4 in the region
where V ∗

4 fulfills the vacuum equations. V4, however, contains also regions
where g ≥ 0. The latter correspond to the regions14 in which Rµν 6= 0.

Due to the supposed incompleteness of Einstein’s V4 and to the complete-
ness of the original V ∗

4 , the two spacetimes can be distinguished physically
despite their local isometry. A further discussion will follow in a subsequent
Communication.

Berlin Adlershof, Institut für reine Mathematik der Deutschen Akademie
der Wissenschaften Berlin.

11see H. Treder, l.c. in footnote 1.
12A. Einstein and W. Pauli, Ann. Math. 44, 131 (1943); A. Lichnerowicz, Theories

relativistes de la Gravitation, Paris, 1955.
13Complete static Einstein spaces are not compatible with the requirements that gµν

be regular and asymptotically Minkowskian also when in the region of strong fields (like
for an incomplete V4) the character of the Killing vector changes; see A. Papapetrou and
H. Treder, Comptes Rend. Acad. Sci. Paris 254, 4254 (1962). - A further discussion
appears in the Mathematischen Nachrichten.

14An analogous situation occurs when, like in §2, the gravitational field is coupled
with matter fields, but no a posteriori (phenomenologic) inhomogeneities are allowed for,
as required by the program of a pure field theory. - In fact, according to Einstein and
Pauli (see l.c. in footnote 2) and to Y. Thiry, Journ. math. pures et appl. (9) 30, 275
(1951), for time-dependent Einstein-Maxwell fields in a complete V ∗

4 theorems hold that
are analogous to the ones that hold in Einstein’s vacuum field.
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