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ABSTRACT
The phenomenological arguments to a dynamical dimensional reductions are con-

sidered in the frame-work of minisuperspace mechanics.

1. Why supplementary dimensions

The metric tensor of a higher-dimensional manifold g00 g0k g0B

gi0 gik giB

gA0 gAk gAB

 i, k = 1, . . . , 3; A, B = 4, . . . , N − 1, (1)

contains the gauge four-vector potentials in the g0B, giB, and four-scalar potentials
in the gAB. The gauge transformations are represented by transformations of the
additional coordinates xA. Mass terms arise by the wave number components in the
supplementary dimensions. Gauge couplings arise by mixed derivatives to the ordi-
nary and additional coordinates.

The most important hint to the existence of more than 3+1 dimensions of space-
time consists in the possibility of attaining regular quantum field models, mainly
superstring. The most important obstacle to the existence of more than 3+1 di-
mensions is classical physics, where no supplementary dimensions are observed. The
classical and phenomenological arguments will be our subject.

2. The supplementary dimensions have to be hidden

The dimension-dependence of macroscopic physics is represented by the inverse-
square law of the Newton and the Coulomb force, which enables the existence of
atomary as planetary systems. It is equally represented by the Rayleigh-Jeans
and the Stefan-Boltzmann radiation law. Consequently, the supplementary di-
mensions have to be hidden today by their microscopic size. Already for the case of
the five-dimensional theory, the possible conclusions are

• There is no dependence on the supplementary coordinates, the gAB are constant.
This does not only trivialize the unification, but makes the supplementary di-
mensions unobservable.

• In the supplementary coordinates, are short-length periodicity has to be required.
This corresponds to an compactification of the supplementary dimensions by a



torus topology. With more than two supplementary dimensions, the assumption
of a high positive curvature provides for the compactification in a natural way.
The volume of the compactified internal factor space can be assumed to be of
the Planck size. In addition, in the far past of the universe it might be free to
move.

There are two kinds of effects to observe, if the size of the supplementary dimen-
sions (det gAB) varies with time. First, the gAB enter the four-dimensional projections
of the field equations as factors or contributions to the coupling constants14. Hence all
arguments about a time dependence of the coupling constants are arguments about
the Kaluza-Klein theories. The recent value of

α̇

α
≈ 0.005 h−1 H (2)

for the Sommerfeld constant is representative also for the other coupling constant,
including the gravitational constant G. Hence, this kind of arguments excludes any
power-law time-dependence of the size in the supplementary coordinates.

The second kind of arguments concerns the thermodynamical properties of matter:
First, no change in the internal size is felt by the first principle of thermodynamics:
the energy conservation

dU = T dS − p dV (3)

has to consider three-dimensional volumes only. Hence, if we do not want to swallow
that the internal pressure of any kind of matter vanishes, the internal volume has to
be constant now, although its being a dynamical variable. Second, the high-curvature
effects in Einstein’s equations have to be compensated. Third, the contraction epoch
may produce relics (see the contribution of U.Bleyer in this volume).

3. Kaluza-Klein-Friedmann models

We consider space-times with homogeneous isotropic factor spaces, their metric
being

ds2 = dt2 −
α∑

j=0

(Rj(t))
2

∑dj

i=1(dxi)2

(1 +
kjr2

j

4
)2

. (4)

with D =
∑

j dj. We take the first for the ordinary 3-dimensional space (d0 = 3). A
perfect fluid is given by a block matrix with an energy density T 0

0 = % and pressures

T
ij
kj

= δ
ij
kj

pj. The continuity equation is given by

d% = −
α∑

j=0

dj
dRj

Rj

(% + pj) (5)

Taking into account, that the density is meant in the D-dimensional space, the or-
dinary density is the integral of % over the internal volumes, so that the ordinary



continuity equation would require

α∑
j=1

dj
dRj

Rj

pj = 0, (6)

which is a strange condition for an equation of state, if not all pj = 0, or all dRj = 0,
for j = 1, . . . , α.

4. Evolution equations for cold-fluid matter

We consider the ideal fluid to be a mixture of different matter components with
the equation of state pj = (mj

dj
− 1)%, which can be integrated into

% =
Mm0m1...mα

Rm0
0 Rm1

1 ...Rmα
α

. (7)

for each component separately. Examples for such matter components are

m + n = d + 4 Superradiation2

m = 6, n = 2d Zeldovich component2

m = 0, n = d + 4 Candelas-Weinberg vacuum4

m = d + 4, n = 0 Moss vacuum8

m = 3d+4
d+3

, n = dd+4
d+3

Sahdev vacuum13

m = 0, n = 2d string vacuum5

m = 6, n = 0 string vacuum5

In this representation, curvatures, and the cosmological constant can be treated like
these matter components, with the corresponding indices, of course, and regarding
that positive curvatures produce negative components on the right-hand side, and
vice versa.

The main advantage of the restriction to cold matter lies in the possibility to
reduce the problem formally to that of a zero energy particle in a formal potential in
a minisuperspace of α + 1 dimensions 2,3,6:

mij
d2ξj

dτ 2
=

dΦ

dξi
, mij

dξi

dτ

dξj

dτ
= 2Φ, (8)

with coordinates, potential, and minisuperspace metric

ξj = ln Rj, dτ = dt exp(−djξ
j), Φ = % exp(2djξ

j), mik = didk − diδik. (9)

Without loss of generality we normalize the initial conditions by

ξj(t) = 0, j = 0, . . . , α, (10)

ξ̇j(t0) = ξ̈j(t0) = 0, j = 1, . . . , α, (11)

ξ̇0(t0) = 1 ξ̈0(t0) = O(1) (12)
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Figure 1: The velocity plane of the two-factor model

This requires the potential Φ to obey now (t = t0)

Φ = O(1),
∂Φ

∂ξ0
= O(1),

∂Φ

∂ξj
= 0, j = 1, . . . , α. (13)

This results in conditions for the matter composition:∑
m0,...,mα

Mm0,...,mα = O(1) (14)∑
m0,...,mα

miMm0,...,mα = O(1), i = 0, · · · , α (15)

This are α + 1 conditions for the matter components, of which at least α− 1, i.e. the
internal curvatures, are assumed to be large. Hence, there have to exist at least two
equally large other matter components to solve the conditions above.

5. The problem of one factor space

The inspection of the formal velocity plane in a one-factor model with the minisuperspace-
orthogonal coordinates ξj: % = ln R, %, %∗ = 3% + (d− 1)σ, (σ = ln S) shows another
problem of constructing a cosmological model with equal expansion in all dimen-
sions at the beginning, and a dynamical contraction of the factor space (split off by
compactification) to a nowadays constant and Planck-order size.

A model we have in mind has to start at some point A on the line a of homogeneous
expansion. No positive matter component except for the Moss type vacuum may
drag it into a state of internal contraction σ̇ < 0. Naturally, we assume a positive
internal curvature, which contributes on the right-hand side just a negative component
dragging into the direction of B. Sometimes, after the universe contracted enough,



we need (by some phase transition) another, now positive and equally strong matter
component8 to cancel the action of the internal curvature and to bring the model back
to a state C on the line c of σ̇ = 0. A second phase transition should now produce
a mixture, which impels the overshooting and allows the model to remain on line c.
It is an open question, what these compensating components in the right-hand side
of the equations really are. We have to accept, probably, ad hoc scalar fields. The
best way out would be a theory with higher-order terms in the lagrangian1,9,10,11,12,
if the square and cubic terms in the internal curvature take over the task of these
compensating components we need. But this has to be considered properly.

Another way to generalize the scheme is the introduction of really anisotropic in-
ternal space analogous to the Bianchi anisotropic models of ordinary space15, but
it is difficult to see how this can solve the compensation problem. There exist also
attempts to understand the dimension itself as a dynamical quantity7.
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