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ABSTRACT
The evaluation of the Lyman-α forests of quasars by

Priester et al. suggests a Friedmann-Lemâıtre-model for
the universe. The components of the Hubble expansion rate
are found by a linear regression of the square of the line-spacing
parameter as a polynomial in the redshift 1 + z, requiring the
term proportional 1+z to vanish. In this essay, we try to restrict
the model to the Eddington-Lemâıtre model, which devel-
ops the deSitter expansion from the Einstein universe. We
show the regression results under this restriction and discuss
some of its consequences.

1 The definition of the Eddington-Lemâıtre

universe

The expansion parameter R[t] of a general-relativistic homogeneous and
isotropic universe obeys the Friedmann equations
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% denotes the energy density of the matter content of the universe, k its curva-
ture index, and Λ the cosmological constant. If the pressure vanishes, and the
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curvature is positive (index k = +1), we can calculate a constant total mass of
the universe. It is given by

M =
2π2

c2
%R3 (4)

and we get a Newtonian energy integral
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Λc2

3
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R2[t]
+

4G

3π

M

R3[t]
(5)

The formal minimum of Ṙ2 is found at the value

Rmin = 3

√
2GM

πΛc2
(6)
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)

2
3 − 1
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Three cases are to be distinguished, because in the actual motion, Ṙ2 cannot
take negative values. If Ṙ2

m > 0, the universe develops from very small R to very
large, or vice versa, with an epoch of comparatively slow expansion. This is the
Friedmann-Lemâıtre universe, which contains an early history determined by
its mass content, and a late history determined by the cosmological constant.
If Ṙ2

m < 0, the universe might be large – it then contracts from very large R to
some minimum value given by the larger zero of H2 and continues reexpanding –
or small – it then expands from a singularity at the beginning to a maximal size
given by the lower positive zero of H2 and continues recontracting. The case in
between, where Ṙ2

m = 0, the universe may be stationary at the size R = Rmin.
The past – or future – end of its evolution is this unstable equilibrium, the other
end the singularity or the deSitter expansion determined by the cosmological
constant. The unstable equilibrium at R = Rmin is the Einstein universe, with

Λ =
1

R2
E

, M =
πc2

2G
RE (8)

Eddington [2] favoured the model developing deSitter expansion beginning
with the Einstein state in the far past. He saw in such a development the
transition from a state of ”matter without motion” to that of ”motion without
matter”. This model was out of consideration as well as Lemâıtre models in
general because of the belief in a vanishing cosmological term. The interpreta-
tion of the quasar absorption spectra by Hoell & Priester [5] gave a new
reason to consider Friedmann-Lemâıtre models. We are here interested in
the rectricted case, distinguished by the existence of a non-singular and defined
initial state of the universe. Before considering this state, we want to show the
fit of the model to the data used by Priester et al. to prove the existence of a
cosmological constant.
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2 The Priester interpretation of the quasar ab-
sorption spectra

The main difference of the Priester interpretation to the conventional one is
the assumptions of a underlying bubble structure instead of a cloud structure
responsible for the absorption lines. Basically, this makes a factor of (1 + z)2

in the expected numbers. That is the reason for the conclusions to differ from
the conventional evaluation [4], [11], [14]. Let us assume, we observe the redshift
of the cuts of a light-beam with the walls of a bubble structure with a typical
comoving size parameter X. This structure is supposed to be at rest in comov-
ing coordinates, and if it develops in size, X may depend on time t. The size
parameter will translate into a correlation length parameter Z by

Z = X
dz

dχ
. (9)

The factor dz
dχ is to be evaluated by the standard light-propagation formula. The

result is

Z[z[t]] = X[t]
R[t0]

c
H[t]. (10)

This formula connects any correlation parameter Z[z] depending on the red-
shift z = R[t0]

R[t] − 1 with the evolution of the size parameter X[t] of the bubble
structure and the evolution of the expansion rate H[t] of the universe. By the
line-spacing in the absorption spectra, the function Z[z] is observed indepen-
dent of any model of the universe. Hence, any assumption about the evolution
of the dominant size parameters of the bubbles leads to a conclusion about the
evolution of the expansion rate, and vice versa. As already mentioned, the con-
ventional cloud-structure interpretation supplements the formula, eq.(10), by a
factor (1 + z)2. This factor accounts for the diminuishing relative cross-section
of a cloud with constant physical size in an expanding universe. The Priester
interpretation avoids this factor by considering bubble walls covered multiply
with clouds. The dilution of these clouds affects the the probability to see the
wall only in the very last stages (z < 2). The cloud-structure interpretation
shows problems without an additional intrinsic evolution of the clouds. In addi-
tion, especially the high-resolution spectra taken by Pettini et al. suggest the
clustering of the clouds in walls [10].

Let us suppose now, that the size X of the bubbles does not depend on
time (i.e. the bubbles are once for ever defined in the comoving system). Then
H[t] is measured by Z[z]. If the interpretation of Hoell and Priester, that
the order of magnitude of Z does not depend on z, is correct, H[t] essentially
cannot depend on time down to the cosmic time of the last quasar. In low-
est approximation, we observe a deSitter universe. The observation, that the
cosmological constant may be the leading term in the Friedmann equation,
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requires the revision of all the Friedmann-Lemâıtre models.

We intend to consider first the adaption to the supposed bubble structure. To
this end, we formulate the most general model by the Friedmann equation with
cosmological constant, curvature, and matter content, the latter being assumed
to be a pressure-free ideal gas:

(
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The parametrized form is chosen to be
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0
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The adaption of such a model has been considered by Hoell & Priester
[5]. The curvature turns out to be positive, the cosmological constant is the
most important term today.

Let us try now for the restricted cases. If we would accept only matter and
curvature (Friedmann models in restricted sense), we get a negative curvature,
and a negative matter contribution. If we would accept only cosmological con-
stant and matter contribution (flat models), we get a negative matter contribu-
tion as well. Both models seem to be not viable in the Priester interpretation
of the Lyman-alpha absorptions. The void universe, containing only cosmologi-
cal constant and curvature, can be adapted. The redshift of the bouncing-time
is z ≈ 6.

For the one-parameter models, only the deSitter universe produces a good
fit. Because of the values of the spacing for small redshift z, given by the first
two entries in table 1, any polynomial without a constant term produces large
contributions to the rest variance here. The present size of the voids is much
too large for a decreasing Hubble expansion rate.

At last, we consider the viability of the Eddington-Lemâıtre model. Our
regression is given by

y = 104Z2 = b

(
3
2
(ζ + 1)(z − ζ)2 + (z − ζ)3

)
. (13)

This formula is derived from eq.(12) by requiring H2 and Ḣ both to be zero at
z = ζ. Given ζ, we have a simple one-parameter regression. We adapt ζ to get
the minimum rest variance. After this procedure, the coefficients are found by

λ0 =
(ζ + 1)3

(ζ + 3)ζ2
(14)
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Table 1: List of observations

k zk 102Zk Gewicht Quasar

1 0.03 0.9 2 local voids
2 0.08 0.88 2 3C273
3 2.25 0.715 4 0420-388
4 2.46 0.685 4 0420-388
5 2.74 0.588 4 0420-388
6 2.99 0.633 4 0420-388
7 4.35 0.633 4 0952-01

Ω0 =
2

(ζ + 3)ζ2
(15)

The main property of these coefficients is, that they only depend on the maximal
redshift ζ. Hence any Eddington-Lemâıtre model with ζ > 8 yields a matter
content of less than Ω8 = 0.0025. The criterion to minimize is

Q =
N∑
k

1
σ2

k

(Z2
k − b (

3
2
(ζ + 1)(z − ζ)2) + (z − ζ)3)2 minimal. (16)

The values σ2
k of the single observations are only important in their relation,

they fix the relative weight wk ∝ 1
σ2

k

of the different observations. If the σ2
k are

the true variances of the yk, Q is χ2 distributed with N − 2 degrees of freedom.

The entries to the regression are listed in table 1, the results for the dif-
ferent models in table 2, and the regression curves adapted to the observa-
tion are sketched in fig. 1. The main result consists in the statement that the
Eddington-Lemâıtre model is better fitted to the data than any other two-
or one-parameter model, and that it is only surpassed by the three-parameter
model promoted by Priester et al. This holds also with new and yet unpub-
lished data added to the analysis [7], [8].
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Table 2: Regression results

Model rest λ0 Ω0 %0
∗) Remarks

variance

Einstein- near voids
deSitter 0.839 0 1 60.58 too large

Milne 0.716 0 0 0 near voids
too large

deSitter 0.118 1 0 0 matter content
negligible

no mass 0.052 1.0223 0 0 bounce at
z = 5.7727

flat space 0.079 1.0037 −0.0037 negative mass
bounce at
z = 5.4956

Friedmann 0.648 0 −0.1972 negative mass
bounce at
z = 5.0703

Friedmann-
Lemâıtre 0.007 1.074 0.01227 0.7433 Priester

model

Eddington- maximal
Lemâıtre 0.035 1.038 0.00311 0.1884 redshift at

z = 7.7386

∗) Density %0 in 10−28 kg/m−3 for H0 = 50 km/s/Mpc.
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Figure 1: The regression curves
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3 The initial state of the Eddington-Lemâıtre

universe

The most important question to be answered in an Eddington-Lemâıtre
model is that about the initial state and the onset of expansion.

For Eddington, the Einstein model represented the non-singular initial
state of the universe. Its structure determines the future development. The
frozen eigenstates of the Einstein model produce the basic structure of the
universe. In addition, this picture allows Eddington to develop the idea of
incorporating the large numbers of cosmology into physics. Physical hypothe-
ses to be tested have to refer to etalons which should be evidently of universal
nature and should depend on nothing, as Planck pointed out. These etalons
should be reproducible everywhere in the universe. By General Relativity, the
main etalon has to be length unit. Special relativity provides us with the light
velocity c, quantum theory with the Planck constant h, and elementary parti-
cle physics with the masses of the heavy stable particles. The etalon of length is
the Compton length of the proton, LC = h

mpc . Independent of the existence of
stable heavy particles which in any case are not believed to be fundamental to-
day, we may refer to the Newton constant of gravitation G. This produces the

Planck units LP =
√

hG
c3 (Planck’s minimal length), TP =

√
hG
c5 (Planck’s

chronon), and the Planck mass MP =
√

hc
G . Physics refers here to the Planck-

ions as the most massive elementary particles at all. c is the maximal velocity, h

indicates the minimal uncertainty of Heisenberg’s uncertainty relation, and c4

G
the maximum force in quantumgeometrodynamics. Eddington insisted on the
cosmological definition of the scale, given by Einstein’s cosmological constant
Λ. A relativistic universe refers to the constants G, c, and Λ. The radius RE

of the Einstein universe is the natural length unit LE of Eddington. The
relation between LE , LH and LP raises the large-number hypothesis.

L2
E ≈ ω2L2

C , L2
C ≈ ωL2

P , (17)

which yields

ω ≈ hc

Gm2
p

≈ 3

√
c3

ΛhG
(18)

In the Eddington model, the scale of the initial state is also one of the final
state, i.e. the Hubble size cH−1. The Eddington model is the only evolution-
ary one containing the stationary universe of Einstein and incorporating his
original ideas of the interdependence of universal length scale, size and mass of
the universe [13].
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Next, we follow the question of the microwave background radiation. At
R = R1 = 0.12 R0 the temperature of the microwave background is about 25 K
only. There is no place for an early hot universe, as we know it from the context
of the standard scenario. Both the cosmic helium-deuterium abundance and the
microwave background should be understood here as the result of a Rees sce-
nario with a population III, which Eddington conjectures to have a mass of
MIII = ω

3
2 mp and a size of their Schwarzschild radii. In the Eddington-

Lemâıtre model there is plenty of time for such a population and for the
thermalization of its radiation as well. The inital state has to be understood as
just given.

At last, we review the arguments about the onset of expansion. In the
Eddington-Lemâıtre model, the universe always expands, although the ex-
pansion begins with a literally infinitesimal amount. Nevertheless, the possibility
was taken into account, that the initial state is an exact Einstein universe, with
an initial time ti where the expansion begins after some change in the matter
content [1], [2], [3], [6], [9]. Different processes were considered in this respect.
We summarize them as instantaneous processes, i.e. phase transitions in order
to evaluate them by the simple bilances of discontinuities in the Friedmann
equations. The latter contain the second derivative of the expansion parameter,
hence the Hubble expansion rate has to be continuous and piecewise differen-
tiable. Any change in the matter content has to ensure, that the matter density
% entering the Friedmann equation (1) remains continuous. This is the point,
which in the papars cited produced most of the misunderstandings. The only
possible discontinuity can be invented in the equation of state. The equation
for the second derivative, eq.(2), contains the pressure. Both might have dis-
continuities, balanced by this equation. For each adiabatically isolated matter
component, the partial pressure depends on the partial density by an equation
of state, which we only consider in the simplest form

p = α% (19)

(α = 0 for a pressure-free gas, α = 1
3 for radiation, α = 2

3 for the kinetic
energy of an adiabatically isolated one-atomic gas). A formal phase transition
consists now in a redistribution of matter into the different components, and
a resulting change in the total pressure. The equation (2) yields Eddington’s
pressure paradox: A balanced universe of definite mass, eq.(8), is smallest, if
free of pressure. In the case of positive pressure, the equilibrium radius shift to
a larger value

R =
2G

c2π
(M + P ), P =

2π2

c2
pR3 (20)

However, rising pressure does not produce expansion but contraction. This is the
consequence of the fact that the equilibrium is unstable. If some matter is bal-
anced with curvature and cosmological constant to yield a stationary universe,
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any increase in pressure leads to a negative second derivative of the expansion
parameter R. Any phase transition to start expansion has to reduce the pressure.
For a warm gas in a radiation bath we get: Production of additional radiation
at the expense of the rest mass of the particle component (annihilation, forming
bound states, etc.) increases the pressure and starts contraction. In contrast
to that, production of radiation at the expense of the thermal energy of the
gas reduces the pressure and starts expansion. In addition, production of rest
mass out of kinetic energy by fragmentation would reduce pressure and start
expansion. Bulk viscosity will not change this result, because we only consider
the moment when Ṙ is still zero. In addition, the radiation density will never
be vera high, as we will see now.

The shift of energy from the kinetic degrees of freedom to the radiation
degrees of freedom can only be of peripheral importance. In no case it can
explain the total amount of background radiation which we observe today. The
energy necessary for the background radiation today would require an initial
gas temperature

kTi = kT0

(
1 +

2
3

nγ

nb

)
≈ 109kT0 (21)

much to high to allow for a metastable equilibrium without radiation. The main
part of the microwave background radiation has to be present already in the
initial state, if we do want to leave it for a population III. The scenario of an
universe balanced by a warm gas without radiation, starting expansion by ther-
malizing also the radiation degrees of freedom, will not give the background
radiation without these additional sources.

Because we are not able to explain the background radiation as primordial
in a Eddington-Lemâıtre universe, we might restrict us to a scenario without
any radiation and refer to a fragmentation of a warm gas without radiation into
clouds [12]. The early discussions about the effective density are avoided by the
balances of phase transitions derived by the equations for gravitation. For the
cosmological matter distribution, a fragmentation is basically a reduction of the
number of particles. The equation of state changes from that for a gas of atoms
to a gas of fragments. The reduction in number might reduce the pressure to
very small values. All the rise in kinetic energy of the particles in the fragments
is summarized in the rest mass of the latter. The production of radiation might
begin not before the condensation reaches the virial limit. Before this time, the
reduction in pressure by fragmentation might have started the expansion.

The new approach to the Friedmann-Lemâıtre models opened by the
analysis of Hoell and Priester suggests the revision of the arguments to the
Eddington-Lemâıtre universe also. Probably the latter is the natural frame
for the scenarios, in which some population III produces the microwave back-
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ground as well as the cosmological distribution of light elements.
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