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Abstract: The use of the uniform cosmic population of cool hydrogen clouds, ob-
served by the absorption forests in quasar spectra, for cosmometry is discussed. The
assumption of a uniform configuration of absorbers yields a Friedmann-Lemâıtre
universe with essential cosmological constant, and small, but positive curvature.

1 The curvature of space

H.J.Treder was my teacher. Together with my fellow-students we were most im-
pressed by his ability to reduce scientific questions to their basic content, backed
by an incredibly deep knowledge of the older literature, never reached by ourselves.
This paper shall recall the contributions of H.-J.Treder to cosmology. I can cite only
some, [28], [29], [30], [31], [33], [34], [35], [36], [37], [38], [39], [40], and add a small
increment.

Einstein’s General Relativity Theory solved the problem of an internally consis-
tent model for a homogeneous universe. In this model, the universe is curved by
gravitation, and generically evolving. Its evolution is to lowest order an evolution of
size, i.e. an expansion, supported by the observation of the microwave background
radiation and the cosmic abundances of helium and deuterium, produced in a early
hot phase of the universe. Its curvature concerns the four-dimensional space-time,
not necessarily the three-dimensional space, because one of the components of the
four-dimensional curvature consists just in the expansion itself. The question to be
considered here is the large-scale curvature of space.

Curvature is defined by the rotation of an object transported parallelly along a
closed path. For a triangle on a surface, this is equivalent to the excess of the sum
of angles against the euclidean value of π. If space has more than two dimensions,
the different orientations of the triangle define different components of curvature.
The most famous experiment to determine the curvature of space is that of Gauß
to evaluate the triangle between the mounts Brocken, Inselsberg, and Kahler Asten.
Even the curvature produced by the gravitational field of the earth is too small to
be measureable that way. For the purpose of measuring the large-scale curvature the
direct triangulation cannot be used: We are not able to leave our observation point.

We may, however, use spacecraft. Interpreting the definition operationally, we
have to consider the parallel transport of the angular momentum vector of a gyro-
scope freely falling around the earth along a closed orbit. H.-J.Treder contributed



to this question a small paper [32], and at that time a lot of effort to state the
ability of the late academy of sciences to enter corresponding programs. We only
mention, that freely falling motion can be used only in the solar system, which is
infinitesimally small for the scale in question.

We might triangulate starting from a base in the solar system, built by different
points on the earth or rockets or other planets. The baseline is at most of the order
of the astronomical unit. By this method we can infer the apparent distance (paral-
lax) of an object, supposing the euclidean geometry. If the true size of the object is
known, we have an expectation for its apparent size. If the observed apparent size
exceeds this value, we have a triangle with positive excess and positive curvature
component. In this form, the method cannot be used because of the lack of objects
of known size far enough for cosmic purposes and near enough to have a measureable
parallax.

At last, we have to substitute the parallax by other means to determine an ap-
parent distance. For cosmological scales, this is the redshift (requiring for existence
the expansion in time and for evaluation the knowledge of the expansion law), the
apparent size and the apparent magnitude (requiring objects not evolving in size
or luminosity respectively), and volume in the sphere of the redshift of the object
(requiring only the existence of the expansion, not its law, but supposing in addition
some uniform population to measure the volume by number counts. The comparison
of the observed angular size with the expected dependence on the redshift has been
tried recently by Kellermann [14].

Compared with the distances in the universe, light is slow. Any distance in space
means also distance in time. This is the reason why most of the determinations
of the curvature of space are intrinsically connected with the determination of the
expansion law. The redshift measures the distance of an object not only in space,
but also in time.

2 The evolution of the universe

A homogenous and isotropic universe may be described by the line element

ds2 = c2dt2 −R2[t](
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)). (1)

the radial coordinate is defined here by the surface of a sphere around the origin,

O = 4πr2R[t]2. (2)

The function R[t] describes the expansion. If the curvature of space does not vanish
(k 6= 0), it is usually chosen to be the curvature radius, and k is an index taking the
values -1, 0, and +1. The coordinates r, θ, ϕ are comoving coordinates (expansion
reduced), change in the position in (r, θ, ϕ) is peculiar motion.



For triangulation, we define the comoving radial distance χ,

χ =

r∫
0

dr√
1− kr2

. (3)

The basic formula is the comoving radial distance χ crossed by a light ray:

c2dt2 = R2[t]dχ2. (4)

Its first consequence is the cosmological redshift: If observer and emitter are sup-
posed to have no peculiar motion, in an expanding universe wavelengthes are shifted
to the red, and the redshift z is defined by

1 + z =
R[λobserved]

R[λemitted]
=

νemitted

νobserved

=
R[tobserved]

R[temitted]
. (5)

The evolution of the expansion parameter R[t] is ruled by Einstein’s equations.
In the case of an homogeous isotropic universe, they yield the Friedmann equation.
The matter filling the universe may consist of different components, but for our
consideration we have to take into account only two: pressure-free ”cold” matter
and ”hot” radiation. Einstein’s equations require

(
1

R

dR

dt
)2 +

kc2

R2
=

Λc2

3
+

8πG%m0

3

R3
0

R3
+

8πG%r0

3

R4
0

R4
. (6)

Λ is the cosmological constant (dynamically equivalent to a vacuum density, as long

as the latter does not change in phase transitions), kc2

R2 the curvature of space. As

a consequence of the Friedmann equation, the Hubble expansion rate, H = 1
R

dR
dt

, is
the square root of a polynomial in the redshift,

H2[z] = H2
0h

2[z], (7)

h2[z] = λ0 − κ0(1 + z)2 + Ωm0(1 + z)3 + Ωr0(1 + z)4. (8)

The parameters λ, κ, Ω are the entries of the right-hand side of eq.(6) in terms of
the critical density defined by the expansion rate, %crit = 3H2

0/8πG, i.e. normalized
cosmological constant, normalized actual curvature, normalized density. For z < 10,
the contribution of radiation is less than 5% of the cold matter contribution, and
will be omitted in the considerations to follow. The basic formula reads now

χ[z] =
c

R0H0

z∫
0

dz

h[z]
. (9)



3 The curvature of an expanding space

In any dimension, the simplest indication of curvature consist in the comparison of
volume and surface of a sphere. If the volume corresponds to the euclidean expec-
tation, the space might be flat, if the volume exceeds that expectation, the space
is positively curved, if the excess is negative, the space is negatively curved. A ho-
mogenous and isotropic space knows of no other component of curvature, and for
the purpose of presenting the question about large-scale curvature, we consider such
spaces only. The point is that this definition of curvature works independently of
the expansion of the space in a cosmological model. Taking the redshift z as a radial
coordinate, we get for k = 1 the formulas

O[z] = (1 + z)2 o[z], o[z] = 4πR2
0 sin2[χ[z]] (10)

for the physical surface, and

V [z] = (1 + z)3 v[z], v[z] = 4πR3
0

χ[z]∫
0

dχ sin2[χ] (11)

for the physical volume. The defining equation for the comoving volume,

dv[z] = o[z]R0dχ[z] (12)

can be transformed into

dv =

√
odo√

16π
√

1− o
4πR2

0

(13)

The only entry which modifies the euclidean expectation is the present curva-
ture radius R0. In comoving coordinates, we got rid of the influence of expansion.
Translating equation (13) into physical volumes and surfaces, we have to substitute
v[z] = V [z](1 + z)−3 and o[z] = O[z](1 + z)−2. the formula between the comoving
quantities v[z] and o[z] is not spoiled by evolution effects. However, we observe v[z]
by counting, but only O[z](1 + z)2 = o[z](1 + z)4 by apparent luminosity. The pure
effect of curvature is second order in redshift.

The intrinsic connection between distance in space and distance in time makes
it impossible to determine the curvature of space independent of the evolution of
the universe in first order of the redshift z. To first order, any measurement is a
measurement of the deceleration parameter,

q = −RR̈

Ṙ2
, q0 = −λ0 +

1

2
Ω0. (14)

Quantities, in which the cosmological evolution is cancelled, the influence of the
curvature of space is cancelled also (for example the surface brightness of an object
of fixed physical size and absolute magnitude,

S[z] = S0(1 + z)−4. (15)



4 The quasar absorption forests

The forest of narrow absorption lines shortward of the redshifted Lyman-alpha emis-
sion in quasars has to be interpreted as indication of a population of intervening
absorbers not connected with the quasar, but uniformly distributed in space. This
hypothesis of uniform distribution makes these absorbers a possible standard for ge-
ometric evaluation. We want to show the interdependence of cosmological evolution
(geometry of space-time), physical evolution (effective size of the absorbers), and
geometrical configuration (dimension of the distribution).

We assume some homogeneous configuration of absorbers between the observer
and the quasar. If this configuration shows no peculiar evolution in structure and co-
moving size, resp. cross-section σ, the distribution of absorption lines is independent
of the comoving distance χ. The mean number of lines in an interval of comoving
distance measures just this interval,

dN ∝ σdχ, (16)

written as density in redshift1

N [z]dz = n0σ
dz

h[z]
. (17)

The number N represents the density of absorbers in comoving coordinates, and
is assumed to be constant. It may vary in a model which supposes merging to be
essential. We have now to account for the evolution of the absorbing objects. If they
are of fixed physical size, and isolated in space, their comoving cross-section goes as

σ ∝ L2[z] = L2
phys(1 + z)2. (18)

We relate the evolution of physical size to the actual physical size,

L2[z] = L2
0l

2[z](1 + z)2 (19)

and we get the known formula

N [z]dz = N [0]
dz

h[z]
l2[z](1 + z)2 (20)

In addition, we expect an column density proportional to the total absorbing mass,
which might evolve,

M [z] = M0m[z], (21)

and inversely proportional to the cross-section, which acts as a dilution of the ma-
terial, and inversely proportional to the the surface at the given comoving distance,
which dilutes the absorbers.

S[z] = S0
m[z]

l2[z]
. (22)

1Throughout this section, functions of z denoted by small letters are evolution factors with the value 1 at z = 0.



If the configuration if higherdimensional, if the absorbers form filaments and sheets,
the effect of evolution in size dependes on the dimension in question. In case of
filaments (dimension d = 1), the size enters linearily,

N [z]dz = N
dz

h[z]
l[z](1 + z), (23)

S[z] = S0
m[z]

l[z]
(1 + z). (24)

In case of sheets [8] or bubble walls ([11],[17],[18]) one gets

N [z]dz = N
dz

h[z]
(25)

S[z] = S0m[z](1 + z)2. (26)

In general, the evaluation of the absorption spectra yields a combined evaluation
of the evolution of the universe, h[z], of the evolution of the absorbing mass density
m[z] and the size of the absorbers l[z], and the dimension d (which might evolve
also, if understood as fractal):

n[z] = h−1[z](l[z](1 + z))2−d (27)

s[z] =
m[z]

l2[z]
(l[z](1 + z))d. (28)

These formulas only illustrate the general situation, that no clear statement about
the curvature (or evolution of the universe) can be made without assumptions about
the evolution of the observed objects and their configuration.

Cloud of fixed temperature and mass, confined by the pressure of the hotter gas
around, have to expand rapidly (l3 ∝ (1 + z)−5 if the surrounding gas cools by ex-
pansion, l3 ∝ (1+ z)−3 if the surrounding gas does not cool with expansion, because
of the intergalactic radiation field). Cooling flows could produce an increasing mass
[7], but in this model the increase is proportional to the surface of the clouds, not
to their mass.

4.1 The Einstein-deSitter universe

If we assume an Einstein-deSitter (CDM) universe, we read the equations (27),(28)
as determination of the evolution of effective size and effective absorbing mass. If we
intend to assume a peculiar cosmological model, we write the equations (27), (28)
in the form

l[z] = (n[z]h[z])
1

2−d (1 + z)−1 (29)

m[z] = s[z](1 + z)−2n[z]h[z] (30)



These equation now determine the evolution factors m[z] and l[z] as functions of
the observable factors n[z] and s[z], with an assumption about the evolution h[z] of
the expansion rate.

Usually, the evolution factor n[z] is accepted in the form

n[z] = (1 + z)γ (31)

while the exponent varies from γ = 0.79 [9] to 5.7±1.9 [16] (1.81±0.48 [43], γ = 1.7
[1], γ = 2.7 [22], [4], γ = 2.1 [41], 2.17± 0.36 [13], γ = 2.09± 0.48 [10], 2.37± 0.26
[20]). Hoell and Priester [11] count approximately γ = 0.25. It is obvious to try
likewise

s[z] = (1 + z)σ. (32)

Combining the catalogues published in [1], [3], [2], [5], [12], [21], [23], [24], [25], [26],
[27], [42], one has to correct for completeness in different ways, but mainly for the
minimum equivalent width, which the spectra allow to find. The effect of this limit
can be estimated if we suppose a particular (the exponential) distribution of the
equivalent width at fixed redshift. We get the values

0.2 < σ < 1.6, (33)

and
0.2 < γ < 0.9. (34)

In Einstein-deSitter universes, the Lyα-effective mass seems to evolve fast

m[z] ≈ (1 + z)µ, µ ≈ σ + γ − 1

2
, (35)

independent of the dimension of the configuration. This is a strong decrease, pre-
sumably by heating the absorbing hydrogen into the (n = 2) state. This alone
contrasts the model of slow condensation and cooling in general and the model of
pressure-confined clouds in particular. In addition, we get for isolated clouds, d = 0,
only a slow evolution of the physical size,

l[z] ≈ (1 + z)ε, ε ≈ γ

2
− 1

4
. (36)

For γ > 0.5, this is a contraction. For filaments (d = 1), the size has to decrease in
time still faster,

ε ≈ γ +
1

2
. (37)

For sheets, we get the condition

γ +
3

2
= 0, (38)

which is far from being observed. At this stage, the evolution of equivalent width
seems to rule out the combination of the Einstein-deSitter (cold dark matter) model
of the universe with pressure-confined absorbers of constant effective mass.



4.2 The universal bubble structure

Assuming the lines to be produced by the walls of a bubble structure like that in
the CfA-survey [6], we suppose d = 2: This is the unique case, where evolution is
absent in formula eq.(27), and where the density of lines may be directly translated
into the history h[z] of the expansion ([11],[17],[18]). This determines the universe
to be of the Friedmann-Lemâıtre class with positive curvature (R2

0 ≈ 10R2
H) and

minimum expansion rate h2
min ≈ 0.5 at zmin ≈ 3.5. The size of the walls does not

enter the equation for the column density, but the evolution in mass is determined
to be

µ ≈ σ − 2, (39)

which is a slow increase in time, indicating faster cooling by metal contamination
than heating by the intergalactic radiation field. This seems to be an appropriate
feature of the model.

Two additional facts may speek for the bubble-wall absorption: First, the number
density of lines seems to have a maximum at z ≈ 3.5, which could reject the simple
models we considered for the Einstein-deSitter case, which contains powers of (1+z)
only. Second, we can infer the actual size of the bubbles assumed to produce the
absorption lines by their walls. It is about the size of the bubbles in the CfA survey,
and this is remarkable, because it connects features observed with very different
methods, and for different classes of objects.

4.3 Filaments

If we interpret the time problem in Jeans-type gravitational condensation schemes
as indication of the fact, that it is necessary to take kinematic effects like caustics
of the primordial velocity field into account, we make a strong point in favour of a
filamentary configuration (d = 1). Other models with filamentary structures can be
found in [15]. As long as the size parameter

l[z] ≈ (1 + z)ε (40)

increases fast enough with time (ε < −1
2
), the history h[z] yields a positive curvature

again. Only in the case where we have to suppose a slower increase or decrease,
this cannot be affirmed, and the qualitative picture (positive cosmological constant,
positive curvature, small positive mass parameter) changes essentially.

4.4 Warning

The evaluations of the line catalogues are condensed here into the two numerical
exponents in the equations (29) and (30). These exponents might be criticized from
the points of parameter estimation and of identification of lines.

With respect to parameter estimation, one can try to correct all values by sup-
posing appropriate distributions, as we already did with the equivalent width. The
main question to be solved remains the identification of lines. There are different
points of view on this problem, indicated by the following three different options:



• All lines between Lyman alpha and Lyman beta indicate a Lyman-alpha ab-
sorption. This point is backed by the limitation of the absortion forest at the
Lyman-alpha emission line and the more or less equal uniform aspect of the
lines in high-resolution spectra.

• Some line are metal lines and have to be eliminated from the list of Lyman-
alpha lines. Here, we have to keep in mind, that too many lines may be affected,
because of the direction of effort is identification, and because of the blending
with hydrogen lines.

• Virtually all narrow lines are metal, we only have not the means to identify them
all. This point of view again produces a distribution of redshift values of inter-
vening objects, the statistics of which are similiar to that of the hydrogen-based
point of view, the redshifts may only be smaller than in the first interpretation.

We analysed the published data from the second point of view, which is the most
conservative one. and wait for the redshift list of the third point of view to repeat
the procedure.

5 Concluding remark

Taken as isolated statement, the distribution of quasar absorption lines cannot re-
ally decide between the bubble-wall interpretation connected with curved space and
small matter content and the interpretation by isolated clouds with a CDM Einstein-
deSitter model. If we add, however, our knowlegde or our hypotheses about the be-
haviour of the absorbing masses, the indications from other types of determination
of the parameters of the cosmological model and the configuration of galaxies and
clusters of galaxies in our mapped neighbourhood, the configuration of the absorbers
becomes a considerable geometrical tool to measure the geometry of the universe
far outside the region, where we can map the position of the galaxies today.

The present paper is part of the program to model the configuration and evolution
of the Lyman-alpha absorbers in the frame of a Friedmann-Lemâıtre universe and
to determine its parameters, initiated by J.Hoell and W.Priester. I would like to
acknowledge the discussion with them, likewise the dispute with A.G.Dorozhkevich,
S.Gottlöber, J.P.Mücket and V.Müller, not to forget the interaction with H.-J.Treder
[19].
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