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Abstract

A new theoretical approach is applied to the cloud model as an explanation for the Lyman α forest. It
is based on the complete Friedmann equations including a Λ-term. In the data sets of Lu et al. 1991 and
Röser 1993 the lines are constrained by a lower limit (0.36 Å, 0.32 Å) of the intrinsic equivalent width.
This makes them suitable for a cloud model analysis, supplementing the bubble wall models which also
make use of the weaker lines. Both data sets can be represented satisfactorily by a Friedmann-Lemâıtre
model with λ0 = 1.08 ± 0.02 and Ω0 = 0.014 ± 0.006, although the regression formulae differ by an
essential factor depending on the redshift. The age of the universe according to this model is 2.8·H−1

0 . It
is not necessary to invoke any evolutionary effects in the number densities and in the physical parameters
of the clouds.
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1 Introduction

The numerous absorption lines observed in the spectra of all high-redshift quasars below the
Ly α emission wavelength are generally regarded as being due to individual hydrogen clouds
or filaments between the galaxies with a smaller portion of the clouds in the galaxies them-
selves. This phenomenon is called the Ly α forest. Here we restrict it to the wavelength range
between Ly α emission and Ly β emission in order to avoid confusion by Ly β absorption
lines. Only a small fraction is found to be caused by lines of heavier elements (Sargent et
al. 1980, 1982, 1988, 1989). A brief history of the Ly α problem has been given by Murdoch
et al. 1986 and by Lu et al. 1991, see also Peebles’ cosmology (Peebles 1993). So far, the
Ly α forests and their implications for cosmology have been analysed with two different
assumptions on the configuration of the absorbers:
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1.1 The cloud model

This approach is based on a model of hydrogen clouds with a a constant average number
density Φ0 of the clouds in a comoving volume and with an invariant physical size. This
implies clouds which are decoupled from the Hubble expansion similar to the galaxies. They
could be envisaged as clouds in dwarf galaxies with almost no star formation at the redshift
interval 1.8 < z < 5. The previous investigators calculated the number dN/dz of clouds
intercepted along the line of sight (in an interval dl) in the frame of a cosmology based on
the restricted Friedmann equation where the cosmological constant Λ is a priori assumed
to be zero (Peterson 1978). As it was not possible to represent the data with any of these
models it was concluded that this showed overwhelming evidence for a strong evolution in the
physical parameters and number densities of the clouds (Murdoch et al. 1986, Lu et al. 1991).
Here we intend to demonstrate that this conclusion rests entirely on the assumption of a
Λ ≡ 0 - cosmology and that it is possible to fit the observed numbers on the basis of a
Friedmann-Lemâıtre cosmology (Λ > 0) without evolutionary effects.

As data base we use the numbers dN/dz of 38 quasars from Lu et al. 1991 and of 50
quasars analysed by Röser 1993. Figure 1 shows the data by Lu et al. with their 1σ errors
in the vertical lines (B) and the data by Röser in form of a histogram (A). The numbers
were binned in dz-intervals of dz = 0.2 (corresponding to 243.2 Å). Lu et al. and Röser
restricted their data to the reliably strong lines with an equivalent width of EW ≥ 0.36
Å and EW ≥ 0.32 Å with EW being the intrinsic (i.e. rest frame) equivalent width. The
observed EWobs = EW · (1 + z) is correspondingly larger (see for instance Peebles 1993, p.
560).

Here we extend the theory to cosmological models based on the complete Friedmann
equation (Friedmann 1922) which includes the Λ-term! It turns out that the best fit model
agrees with the Friedmann- Lemâıtre model (λ0 = Λc2/3H2

0 = 1.080 and Ω0 = 0.014) which
was previously derived by the Friedmann regression method for a universal bubble structure
(Liebscher, Priester, Hoell 1992a and 1992b) (LPHa and LPHb hereafter).

1.2 The bubble wall model

In this model, the absorbers are assumed to consist of hydrogen filaments in the walls of a
bubble structure. This is based on the observation that the quasar spectra with 2 < z < 5
show a characteristic pattern where the absorption lines are separated in the statistical
average by typically ∆λ = 6 to 9 Å in the specified range between Ly α emission and Ly β
emission. If the void structure in the distribution of galaxies in our cosmological neighborhood
(z < 0.04) is a universal phenomenon and not a local peculiarity then it should be observable
as a bubble wall structure in the Ly α forest. This assumes that the hydrogen clouds or
filaments are preferentially located between (and also in) the galaxies on the walls. From
the galaxy distribution (e.g. deLapparent et al. 1986, Geller and Huchra 1989) one can
envisage that the thickness of the walls amounts to about 0.1 to 0.2 of the void diameter.
For a statistical significance of the structure it is necessary to count also the weaker lines
(EW ≥ 0.1 Å) in the 2 < z < 5 range. A close inspection of the spectra (e.g. Pettini et
al. 1990) shows that the broader lines can be caused by more than one filament within one
bubble wall which differ in relative peculiar motion along the line of sight. In our previous
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paper (LPHa) we derived the theory of the bubble wall model with a relation between the
typical redshift interval ∆z between the absorption lines and the bubble size at the redshift
z (see eq.(16) in LPHa). The bubbles are assumed to expand with the Hubble flow. Note
that dN/dz = 1/∆z = 1216Å/∆λ.

∆z[z] =

(
dN

dz
[z]

)−1

= R0 ·∆χ
H[z]

c
. (1)

Here is R0 ·∆χ the void diameter at the present time t0. ∆χ is the comoving dimensionsless
size of the voids (i. e. the inner diameter of the bubbles). The expansion rate H[z] is obtained
from the Friedmann equation

H2[z] =

(
Ṙ[z]

R[z]

)2

=
Λc2

3
− kc2

R2[z]
+

8πG

3
%0

R3
0

R3[z]
(2)

or
H2[z] = H2

0

(
λ0 − (λ0 + Ω0 − 1)(1 + z)2 + Ω0(1 + z)3

)
. (3)

Here is λ0 = Λc2

3H2
0
, Ω0 = 8πG

3H2
0
%0 with %0 the present matter density, 1 + z = R0

R[z]
and R0 =

c
H0

√
k

λ0+Ω0−1
. The combination of eqs.(1) and (3) yields the regression form

(∆z)2 = a0 + a2(1 + z)2 + a3(1 + z)3 (4)

where the ai are simple functions of the density parameter Ω0 and of the normalized cosmo-
logical term λ0 (Fig.2). Due to the absence of a linear dependence on (1 + z) the regression
yields small error bars. The best fit is (LPHb):

λ0 = 1.080± 0.006(1σ), (+0.03,−0.04(3σ)) and (5)

Ω0 = 0.014± 0.002(1σ), (+0.007,−0.009(3σ)). (6)

The HST-data of low redshift quasars (e.g. 3C273) are not yet taken into account, as
it appears that the nearby bubble walls are already so diluted that statistically only 1 out
of 2 walls show a measurable Ly α absorption line (see Fig. 1 in LPHa). The dilution of
the nearby bubble walls requires further investigations. It is, however, not significant for
the present analysis at larger redshifts. Models of this inner evolution of the walls can be
constructed, but their parameters will have to be adapted, and therefore do not contain
information for the regression (eq.(4)). Important, however, is the finding that our model
predicts a typical size (∆z ≈ 0.009) of the nearby bubbbles for z → 0 which agrees with the
observed void diameters of the galaxy distribution.

2 Theory of the cloud model with the complete Friedmann equa-
tion

Following Peterson (1978) and Lu, Wolfe and Turnshek (1991) the number of clouds dN
intercepted along the line of sight dl is given by

dN = σ · Φ · dl (7)
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with the here invariant average physical cross section σ = σ0 of the clouds and the physical
number density Φ of the clouds, here given by

Φ = Φ0

(
R0

R

)3

= Φ0(1 + z)3, (8)

with a conserved (Φ0 = const) number of clouds in a comoving volume. Φ refers to the
number of clouds which produce absorption lines with an intrinsic equivalent width EW
larger than an observationally fixed value. On the line of sight we get

dl = R[t]dχ = −c · dt, (9)

where R[t] is the scale factor at time t and dχ the comoving radial coordinate of the Fried-
mann metric. From the redshift relation 1 + z = R0/R it follows that

dz

dt
= − R0

R[t]
·H[t] = −(1 + z)H[z] (10)

with H[z] the Hubble expansion rate at the absorption time of a cloud which is observed
with redshift z. Equ. (9) and (10) yield

dl

dz
=

c

(1 + z)H[z]
. (11)

With eqs. (7) and (8) we have

dN

dz
= σ0 Φ0 · (1 + z)2 c

H[z]
. (12)

Thus the observed numbers dN/dz should be represented by the basic formula

dN

dz
[z] =

dN

dz
[0]

(1 + z)2√
λ0 − (λ0 + Ω0 − 1)(1 + z)2 + Ω0(1 + z)3

(13)

with
dN

dz
[0] = σ0 Φ0 ·

c

H0

(14)

A satisfactory representation of the observed numbers of Lu et al. (B) and of Röser (A) is
obtained with eq.(13). The best fit yields a Friedmann-Lemâıtre model with

λ0 = 1.08± 0.02 and Ω0 = 0.014± 0.006 (15)

and dN/dz[0] = 3.1 for (B) and dN/dz[0] = 3.72 for (A). We see that the numbers dN/dz
from Röser with EW ≥ 0.32 Å are systematically 1.2 times larger than the numbers from Lu
et al. with EW ≥ 0.36 Å because the number dN/dz[0] depends on the chosen lower limit
of the intrinsic equivalent width. It can easily be shown that the errors of the regression are
small. In order to demonstrate this we have included a dotted curve in Fig. 1 which represents
the corresponding Friedmann-Lemâıtre model with euclidean metric: λ0 + Ω0 = 1 with λ0 =
0.986. The dash-dotted curve shows another model with euclidean metric (λ0 = 0.9, Ω0 = 0.1)
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since this was favored by Fukugita et al. (1990, 1993). It was derived from number/magnitude
counts of galaxies and from the visibility of gravitational lenses if structure and dust in the
lensing galaxies are taken into account. The two euclidean models are obviously incapable
of fitting the Ly α data.

It turned out that the best fit model agrees with the Friedmann- Lemâıtre model (λ0 =
Λc2/3H2

0 = 1.080 and Ω0 = 0.014) which was previously derived by the Friedmann regression
method for a universal bubble structure (LPHb).

For a (λ ≡ 0)-cosmology the basic equation (13) reduces to the well known formula

dN

dz
=

dN

dz
[0]

(1 + z)√
1 + Ω0z

(16)

which was crudely approximated by

dN

dz
=

dN

dz
[0](1 + z)γ. (17)

This formula was commonly used for the representation of the observed numbers.
For an Einstein-deSitter model with Ω0 = 1, λ0 = 0 and for the limiting case Ω0 = 0

eq.(16) reduces to

dN

dz
=

dN

dz
[0](1 + z)1/2 and

dN

dz
=

dN

dz
[0](1 + z). (18)

respectively. It is immediately obvious that the data in Fig. 1 cannot be fitted to the square
root or the straight line (starting from 1+z = 0) of eq.(18) or by any of the models of eq.(16)
with Ω0 > 0. This result has been taken as overwhelming evidence for strong evolutionary
effects. This conclusion, however, rests entirely on the (Λ ≡ 0) assumption.

Here, one may ask why basically the same data set used for two different classes of
regression functions, eq.(1) vs. eq.(12), yields the same cosmological model. The reason is,
that the data set is not really the same, it is, however, derived from the same catalogues. The
analysis of the bubble wall model is based on a counting procedure not refering to a minimum
value of the equivalent width, but to relative isolation of the lines. Therefore, more lines are
taken into the data set, in order not to loose any of the bubble walls. The analysis of the
cloud model sets a lower limit on the intrinsic equivalent width. Because of the observation,
that the distribution of the widths at a fixed redshift does not change with redshift, it is
justified to set the same limit at each redshift. In order to have the same completeness over
the redshift scale, one has to choose a limit large enough. With regard to the bubble-wall
structure, the choice of the limited width has the consequence, that only thick regions in
the bubble walls are taken into account and that these regions correspond to individual
clouds. They mark the bubble walls only if a large cloud is intersected by the line of sight in
these walls. Thus, in this case the cloud model theory must be applied. The consistency of
both model assumptions is supported by the coincidence of the resulting parameters of the
cosmological model.
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3 The evolution in Lyman-alpha absorbing mass

We can show that independent of the generalizations, which can be constructed to account
for a possible evolution of the individual absorbers, we obtain a simple formula for the
absorbing mass of the hydrogen cloud. This allows to point out the essential feature of these
generalizations.

The equivalent width yields the corresponding column mass density W , and we assume
to observe its dependence W [z] on redshift. The typical mass of an absorbing object is then
the product of that column mass density with the physical cross-section σ. To obtain the
mass per comoving volume, we have to multiply with the comoving number density ΦO, and
get

M [z] = Φ0[z] σ[z] W [z] (19)

The physical cross-section σ, and the comoving number density Φ0 may evolve by fragmen-
tation or merging processes, the former also through changing confinement conditions. With
the equation (12), which is valid for evolving σ and Φ0 too, we get the relation

M [z]

H[z]
=

1

c

dN

dz
[z] W [z] (1 + z)−2. (20)

This equation makes the quotient M [z]/H[z] an observable quantity, independent of the
configuration and evolution of the individual absorbers. Again, the data of Lu, Wolfe and
Turnshek show only a weak dependence of this quotient on redshift, if we accept the result
that the distribution of equivalent widths is independent of the redshift. In the no-evolution
case, this implies a weak dependence of H[z] on z in the observed redshift range, i.e. the
Friedmann-Lemâıtre universe found above.

The assumption of an Einstein-deSitter universe, H2 = H2
0 (1+z)3, is consistent only with

an absorbing mass also increasing approximately like H[z], i.e. a decrease with cosmic time.
With eq.(10), we get

1

M

dM

dt
= − 1

M

dM

dz
H[z](1 + z) (21)

This is a serious problem. If we accept the observed dN/dz ≈ dN/dz[0](1 + z)2.75, and
W [z] = W [0], this decrease is equivalent to a lifetime of mass of about 0.1 Hubble-times at
z = 3: With this short lifetime of the hydrogen mass in the clouds it could not be expected
that Ly α absorption lines can be observed in nearby quasars, contrary to the findings in
e.g. 3C273. The consideration of the distribution of equivalent widths produces an additional
argument against the restriction to Einstein-deSitter universes.

4 Conclusions

It is reassuring that both approaches for an explanation of the Ly α forest yield the same
cosmological model without any requirement for evolutionary effects. The size of the large
clouds can be regarded as decoupled from the Hubble expansion for redshift z < 5 similar
to the galaxies.

The dN/dz values of the clouds were obtained by Lu et al. and Röser by averaging
the observed numbers in redshift ranges of ∆z = 0.2. Within the bubble wall hypothesis
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this corresponds to averages over more than 20 voids and walls along the line of sight. An
interesting feature of the curves (A) and (B) in Fig. 1 is that the values become nearly
constant in the range z > 5. This can be interpreted in the sense that even for the strong
lines (EW > 0.32 Å or > 0.36 Å) hydrogen clouds in each bubble wall produce observable
absorption lines. The walls are then geometrically dense.

The age of the universe for the best fit model is

t0 =
1

H0

∫ 1

0

dx√
Ω0 · x−1 + λ0x2 − (λ0 + Ω0 − 1)

= 2.8 · 1

H0

. (22)

This corresponds to 30 · 109 years for H0 = 90 km/(s Mpc). It should be noted that in this
case the density parameter Ω0 = 0.014 agrees sufficiently well with the total baryonic density
parameter ΩB,0 · h2

0 = 0.013 ± 0.003 obtained by the ”primordial nucleosynthesis redux”
(Walker et al. 1991) with h0 = H0/(100km/(s Mpc)). The term ”total” comprises the visible
and the dark baryonic matter. The latter can be envisaged as consisting of ”dead” stars (e.g.
neutron stars), brown dwarfs, etc. and nonluminous clouds. In this old universe most of the
early generations, in particular the early halo stars, have burned up their thermonuclear fuel
a long time ago. As Persic and Salucci 1992 have shown, only a small portion of the baryons
is contained in visible objects (galaxies, gas, dust). They found Ωb,0 ≈ 0.003 for the visible
baryons. Thus between 80 and 90 percent are hidden in dark objects. The baryonic dark
matter seems sufficient to explain the flat rotation curves of galaxies and the virial masses. All
this is in accordance with our low-density universe where the expansion has been dominated
by the Λ-term or the corresponding quantum vacuum energy density ρΛc2 = Λc4/8πG for
the last 15 · 109 years (compare LPHb Fig. 4 and Hoell and Priester 1993b). We furthermore
argue that a low value of H0 in the range of 50 km/(s Mpc) can be excluded by these data.
The density parameter from Walker et al. 1991 corresponds to a total baryonic density of
ρB,0 = (0.24± 0.05) · 10−30 g · cm−3. With a Hubble rate H0 = 50 km/(s Mpc) , however, a
density of only ρ0 = 0.07 · 10−30 g · cm−3 is obtained from Ω0 = 0.014. This is far below the
density obtained by the primordial nucleosynthesis.

The present curvature radius is

R0 =
c

H0

√
k

Ω0 + λ0 − 1
= 3.3 · c

H0

. (23)

H0 = 90 km/(s Mpc) yields R0 = 3.5 · 1028 cm. This model can easily evolve from an
inflationary expansion in the very early universe where the exponential increase of the scale
factor is 1031. It also can evolve in a similar way from the cosmic egg model by Israelit
and Rosen 1989 or from the singularity-free Big Bounce model by Blome and Priester 1991
(Fig. 3). The expansion rate H[t] in the Big Bounce model remains with H = 1035 s−1 always
far below Hawking’s upper limit Hlim = 1039 s−1 (Hawking 1985) while in the inflationary
model this limit is exceeded during the time interval from 10−44 to 10−40 s. The phase
transition by which the primordial matter (quarks and leptons) originated, must have been
terminated at tQ = 10−32 s with a curvature radius RQ = 600 cm in order to match the
model with λ0 = 1.08 and Ω0 = 0.014 at the present time. The total density parameter Ω∆

for exclusively relativistic particles is

Ω∆[tQ] = ω[tQ] + λ[tQ] = 1 + 10−48 at tQ = 10−32 s. (24)
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The λ-term can be completely neglegted at that time. The density parameter ω[t] derived
from the Friedmann equation (see LPHb, eq.(24)) in the very early universe (with Ω0 = 0)
is:

ω[x] = ω0

(
ω0 − (Ω0 + λ0 − 1) · x2 + λ0x

4
)−1

(25)

with x = RQ/R0 = 2 · 10−26 and ω0 = 3 · 10−5 corresponding to T0 = 2.735 K for the
temperature of the background photons.

In contrast to the conventional expectation of a flat or hyperbolic universe (Carroll, Press,
Turner 1992, Tab. 1), the model has a spherical space metric. The positive curvature is the
result of a slow decrease with z of the calculated H[z] in the region 2 < z < 4. The result
of a general low absorption in the very distant universe obtained by Schneider, Schmidt and
Gunn 1991 can be interpreted as an indicator of a minimal expansion rate in the region
3.5 < z < 4.5. Our model evolved through a phase with Ω > 4 at a long lasting epoch about
20 ·109 years ago. This was of vital importance for galaxy formation (LPHb, Fig. 5 and Hoell
and Priester 1993a). It demonstrates that the inflation scenario cannot predict Ω ≡ 1 nor
Ω + λ ≡ 1 (compare also the results of Madsen and Ellis 1988).

The explanation for the origin of the bubble structure remains a difficult task. A possible
scenario has been given in the conclusions of LPHa, for other models see e.g. Bahcall et al.
1989, Schramm 1991, Nambu et al 1991, Amendola and Occhionero 1993.

Acknowledgements
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Figure 1: Line counts dN/dz as function of redshift (1 + z). The data were taken from Lu et al.(1991) and
Röser (1993), who restricted the lines by lower limits of the intrinsic equivalent widths EW , as required by
the cloud model. The best fit corresponds to a Friedmann-Lemâıtre universe with λ0 = 1.08 and Ω0 = 0.014.

Figure 2: Friedmann regression analysis of 34 data points from 21 quasars in the redshift range 1.8 < z < 4.4
(see LPHb). The curve agrees at z = 0.02 with a typical bubble size of ∆z = 0.009 (black dot) in the
distribution of galaxies (Geller et al. 1989).

Figure 3: Curvature radius R as function of time in the very early universe leading to the present model
with Ω0 = 0.014 and λ0 = 1.08.
PL = Planck bubble with RPL = 1.6 · 10−33 cm at t = 5.4 · 10−44s.


