
Multifactor cosmological models

Dierck-E.Liebscher∗ and Ulrich Bleyer†

February 8, 2007

Abstract

We review the phenomenological properties of Kaluza-Klein cos-
mologies with an open number of compactified factor spaces. There
exist general arguments for the necessity of positive internal curva-
tures to produce a dynamic compactification. The general procedure
to get exact solutions as to classical minisuperspace evolution as to
the Wheeler-deWitt equation is considered.

1 Introduction

Multidimensional cosmological models are a phenomenological consequence
of multidimensional field theories. Three-dimensional phenomenology re-
quires the additional dimensions to form hidden factors of the space. The
open question is the dynamical importance of the additional factors of the
space, the question, if and how their size changes with time. At present
time the factor spaces are hidden macroscopically by their small size. This
size might change in the early history of the universe, but in recent times
(primordial nucleosynthesis and later) this size should be nearly constant in
order to save the observations of the invariability of the fundamental con-
stants [27, 30, 31], or the first law of thermodynamics, or the Laplace law
of light intensity, or the laws of atomic structure [17]. The effects of higher
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dimensions should be expected in the early universe, where we should as-
sume all dimensions to be of the same size as an expression of unbroken
symmetry. The breakdown of symmetry below the Curie temperature of the
vacuum should reveal the differences, i.e. should factor the additional di-
mensions off the conventional 3-space and reduce their size to microscopic
magnitudes, possibly parallel to an inflation of the 3-space [19, 24, 29, 32].
For simplicity, one usually assumes the additional dimension to form one
unique factor space, with different topologies, but nearly isotropic by itself.
The configuration of the factorwise isotropic cosmological model is then given
by two expansion parameters. We might conjecture that such a model will
miss eventually chaotic behaviour and other instabilities typical for higher-
dimensional configuration and phase spaces [13, 33]. That is the reason why
one should think about multifactor models, where the additional dimensions
form more than one hidden factor of the space.

2 The particle analogy

If the D-dimensional space is split into individual dj-dimensional factors
(D =

∑
j dj), a homogeneous isotropic universe has to be isotropic only

factorwise. Instead of a line element of the form

ds2 = c2dt2 − R2[t]

(
dr2

1 − kr2
+ r2(dσ2)

(D−1)−dimensional unit sphere

)
, (1)

we write

ds2 = c2dt2 −
α∑

j=0

(Rj[t])
2

∑dj

i=1(dxi)2

(1 +
kjr2

j

4
)2

. (2)

That is the line element of a world with α+1 factors, each homogeneous and
isotropic, and each with their individual expansion parameter, or curvature
radius, Rj[t], and curvature index, kj. Each factor adds one term, the first
being always the conventional 3-space (d0 = 3). From the corresponding
point of view, these cosmological models generalize the simplest anisotropic
homogeneous solutions of General Relativity.

In our model, we have to assume a phenomenological matter tensor gen-
eralizing the ideal fluid by allowing individual pressure values pj for each
factor space. The energy-momentum tensor T a

b is diagonal again, but the
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pressure might differ in directions, which belong to different factors of space.
Microscopically, that corresponds to particle interactions, which do not allow
to redistribute the kinetic energies between the individual factor spaces, but
only internally in each factor. This produces a kind of constrained equilib-
rium which allows for the different pressure values.

The continuity equation in such a model is given by

dε = −
α∑

j=0

dj
dRj

Rj

(ε + pj) . (3)

The energy density ε is a density in a D-dimensional space. To be inter-
preted in 3-dimensional terms, it has to be integrated over all the additional
dimensions. The ordinary continuity equation (i.e. the first law of thermo-
dynamics) is bound to

α∑
j=1

dj
dRj

Rj

pj = 0 . (4)

This has to be read as a condition on the equation of state in the additional
space factors or on their expansion rates. Correspondig restrictions to the
equations of state are difficult to imagine, so these conditions should concern
the expansion rates. The first law of thermodynamics should be understood
as proof of the extreme smallness of internal expansion rates today. This
is backed by the fact that we do not observe any change in fundamental
constants, which would be produced by non-vanishing internal expansion
rates [27, 30].

Just as in the standard model, we describe the matter as a mixture of
special barotropic components, which have a linear equation of state,

pj = (
mj

dj

− 1)ε . (5)

With the continuity equation, eq. (3), we get the integral

ε = Mm0m1...mα

Rm0
0 [0]Rm1

1 [0]...Rmα
α [0]

Rm0
0 Rm1

1 ...Rmα
α

. (6)

Such barotropic equations of state describe “cold” matter in the sense, that
temperature does not enter. Any such matter component is characterized by
the family (m0, m1,. . . , mα) of indices[18]. In analogy to the 4-dimensional
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world we can include in this form the curvatures of the individual factor
spaces and the cosmological constant [5]. The cosmological constant is char-
acterized by the index family (0, 0, . . . , 0), the curvature of the k-th factor
by (mi = 0 for i 6= k, and mk = 2). The important case of vanishing trace of
the energy-momentum tensor will be called superradiation. It is given by

α∑
i=0

mi = 1 +
α∑

i=0

di . (7)

Examples for different matter components in the case of two space factors
is shown in table 1. This is the place to remind that different models of the
vacuum produce vacuum components, which do not coincide dynamically
with the cosmological constant.

The main advantage of reducing the matter components to equations of
state like eq.(5) is to map the cosmological evolution onto the motion of a
particle in an formal (α+1) dimensional space which carries a scalar potential
[5, 8, 15, 34]. That is because the Einstein equations take the form

(
α∑

j=0

dj
Ṙj

Rj

)2 −
α∑

j=0

dj(
Ṙ2

j

R2
j

− (dj − 1)
kj

R2
j

) = 2κε ,

d

dt
(
Ṙi

Ri

) +
Ṙi

Ri

α∑
j=0

dj
Ṙj

Rj

− (di − 1)
ki

R2
i

= κ(pi +
ε −∑

j djpj

D − 1
) ,

where pj and ε are given by eqs.(3) and eqs.(6). In the case of the density
being the sum of cold components, this can be transformed to

mij
d2ξj

dτ 2
=

∂Φ

∂ξi
. (8)

The first integral is simply

mij
dξi

dτ

dξj

dτ
= 2Φ . (9)

Here, the formal coordinates ξj are

ξj = ln
Rj

Rj0

, (10)
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Table 1: Matter components in a two-factor cosmological model

Indices Interpretation Source

m, n
m + n = d + 4 superradiation [5]
m = 3, n = d + 1 dust-like superradiation [5]
m = 4, n = d radiation-like superradiation [5]

radiation
at low temperatures

m = 0, n = d + 4 vacuum by
Candelas & Weinberg [12]
contribution of Casimir energy

m = d + 4, n = 0 vacuum by Moss [26]
m = 3d+4

d+3
, n = dd+4

d+3
vacuum by Sahdev [28]

radiation at
high temperatures

m = 6, n = 2d ultrastiff fluids
by Zeldovich [5]

m = 0, n = 2d variant of string vacuum [15]
monopole effects

m = 6, n = 0 variant of string vacuum [15]
m = 2, n = 0 curvature of

ordinary space
m = 0, n = 2 curvature of

additional space factor
m = 0, n = 0 cosmological constant
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the formal time is
dτ = dt exp(−djξ

j) . (11)

The potential is given by

Φ =
8πG

c4
ε exp(2djξ

j) , (12)

and the formal mass matrix is the minisuperspace metrice

mik = didk − diδik , mik =
1

D − 1
− 1

dk

δik . (13)

We now intend to determine the conditions which are necessary for the exis-
tence of solutions with negligible expansion rate of the supplementary space
factors. To this end, we normalize the initial expansion parameters to be
ξj[t0] = 0, j = 0, . . . , α. The time ist normalized by the Hubble age, i.e.
ξ̇0[t0] = H0. The deceleration parameter is of the order of ξ̈0[t0] = O(H2

0 ). If
the expansion rate of the internal space factors is much less than the Hubble
factor, we have

ξ̇j[t0] = o(H0), ξ̈j[t0] = o(H2
0 ) . (14)

If we substitute this into the evolution equations (8) and (9), we get

Φ[ξ[t0]] = O(H2
0 ) ,

∂Φ

∂ξj
[ξ[t0]] = O(H2

0 ) . (15)

This implies

8πG

3c2

∑
all components

Mm0,...,mα = O(H2
0 ) ,

8πG

3c2

∑
all components

miMm0,...,mα = O(H2
0 ) , i = 0, · · · , α .

We got α+2 conditions on the matter components which enclose cosmological
constant and curvatures. The number of internal space factors is α. If we
want to ensure their small size by large curvature, we have α formal matter
components of large negative value, which have to be compensated in order to
allow for slow internal expansion rates. Because we found α+2 compensation
conditions, we have to invent two other matter components as large as the
curvatures. In order to circumvent this problem, one might opt for small size
not by curvature, but by periodicity (i.e. torus topologies). This would be a
requirement external to the problem, however.
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3 Compactification and contraction

The cosmological model which we considered can describe the evolution only
after the factorization of the D-dimensional space. This factorization is a
symmetry breakdown, which also produces the finiteness (compactness) of
the additional space factors. It is called compactification. Different models
exist for this process. We can classify them in two classes: If the compactified
factors are small from the very beginning, we call them spontaneous com-
pactification. The program to get the small sizes by quasi-classical evolution
as described above, we call dynamical compactification. This contraction of
the internal space factors could and should be accompanied by the inflation
of external size. This picture of dynamical compactification begins after the
factorization with a state of expansion more or less common for all space
factors (point A in fig.1),

ξ′0 = ξ′1 = . . . = ξ′α . (16)

In the final (late-time) state the expansion of the internal factors should have
ceased (point C in fig.1),

ξ′1 = . . . = ξ′α = 0 . (17)

During this transition, the sizes of the internal space factors have to shrink
to microscopic (much smaller than Heisenberg length) scale. The model will
achieve this only by passing a point B in the hodograph, which lies in the
lower half-plane. The formal acceleration vector (i.e. the tangent to a curve
in the hodograph) has to point into this direction. For the equations of state
shown in table 1 this is possible only for negative contributions to the total
density (Mm0,m1 < 0), and we get negative contributions only by positive cur-
vatures, if we do not want to invent ad hoc exotic (antigravitating!) matter.
A large internal curvature, however, produces the compensation problem just
considered for late times. Then the internal expansion rate shall be negligible
(point C in the hodograph). The large curvature has to be compensated in
this stage, and just before it should be overcompensated, so that the fast
contraction can be decelerated.

If the matter components have positive pressure in the internal space
factors, the contraction of these yields an effective energy production from
the 3-dimensional point of view, because 3-dimensional energy conservation
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Figure 1: Hodograph of a two-factor model
The diagram shows the formal expansion rates of the external and the inter-
nal space factor. Common expansion in the time just after the factorization
(i.e.compactification) is described by a point A on the diagonal. Stationarity of
the internal space factor in late times is given by a point C on the ξ̇0 axis. The
transition from A to C has to contain a fast and extreme contraction of the in-
ternal factor. Therefore, the path in the hodograph has to pass a point B in the
lower half-plane. The tangential directions for the matter components in table 1
are shown in the lower left (positive contributions to the matter).
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requires eq.(4). In addition, perturbations can acquire mass from the 3-
dimensional point of view and present themselves as dark matter today [1,
8, 16].

4 Solutions to perfect fluid models

The equations of motion for the quasi-mechanical problem have exact solu-
tions in several particular cases, all depending on the formal potential Φ[ξ].
If the latter depends only on one linear combination of the coordinates ξk,

Φ[ξ] =
∑
k

Mk exp(ak

∑
j

ωjξ
j) , (18)

we may choose this combination as one of a set of new coordinates and
separate the system. This has been used for various combinations of fluid
components, including curvatures and cosmological constant [5, 6, 9]. In
particular, this case contains all models with a one-component potential (one-
component fluid, one curvature, or cosmological constant), cited already in
table 1.

Some reductions are also possible in the case where the quasi-potential
depends on two independent linear combinations of the coordinates,

Φ[ξ] =
∑
k

Mk exp(a1k

∑
j

ω1jξ
j + a2k

∑
j

ω2jξ
j) . (19)

This case will cover any two-component fluid model [2, 9]. As any other model
too, our approach will describe “the real situation” only approximately. The
desire to get exact solutions should be questioned for that reason.

The integrability of our particle model has been considered. A sufficient
condition is derived by the analogy to Toda-like systems for potentials in-
cluding curvature only [3, 21].

Changing equations of state are represented in our model by changes in
the composition of the fluid. It is the experience from conventional cosmo-
logical models, that curvature, cosmological constant, and mainly one fluid
component, at most two, determine the evolution of the model. The transi-
tion from radiation-dominated to matter-dominated universe, for instance, is
that fast, that we might represent this transition as a usual phase transition.
Changing equations of state are used in [14]. They fit into our particle model,
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if the equation of state may be integrated to get a component of our formal
potential.

The Wheeler-deWitt equation for the quasi-classical model is equal to the
corresponding Schrödinger equation for zero formal energy. The operator of
the kinetic energy, however, is not positive definite, because the minisuper-
space metric is pseudoeuclidean [22, 7, 21]. In a covariant description in
the minisuperspace (including freedom in the time shift) we have to write a
covariant Hamiltonian, which implies a unique factor ordering [23].

5 Multifactor cosmological models with scalar

field

Because multifactor cosmological models with perfect fluid matter source give
us only a phenomenological model of cold matter, we have to fit a scalar field
in the scheme, too. These models should describe the transition processes
expected in the symmetry breakdown more appropriately.

Therefore, we consider a cosmological model with α + 1 (α > 0) Einstein
spaces, containing a homogeneous, minimally coupled scalar field ϕ[t] as a
matter source and a cosmological constant Λ. The kinetic term of the scalar
field does not change the form of the particle model. The potential of the
scalar field is also added, but is only in a special case of the exponential form
produced by the simple barotropic equations of state of the phenomenological
approach.

Including a scalar field, the model is integrable in the case where one of
the Einstein spaces is not Ricci-flat and the cosmological constant vanishes.
Here, we discuss the case of nonzero cosmological constant, free massless
scalar field and all spaces Mi, i = 0, . . . , α, being Ricci-flat (for details and
references see [4, 11]).

The formal Lagrangian reads

L =
1

2

α∑
i,j=0

(mij ξ̇
iξ̇j + ϕ̇2) − Φ , (20)

with the energy constraint imposed

E =
1

2

α∑
i,j=0

(mij ξ̇
iξ̇j + ϕ̇2) + Φ = 0 . (21)
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The potential is given by

Φ = Φ[ξ, ϕ] = exp(2
α∑

i=0

diξ
i)

−1

2

α∑
j=0

dj(dj − 1)kje
−2ξj

+ U [ϕ] + Λ

 .

(22)
At the quantum level the constraint (21) is modified into the WDW equation(

1

2

(
Gij ∂

∂ξi

∂

∂ξj
+

∂2

∂ϕ2

)
− Φ[ξ, ϕ]

)
Ψ[ξ, ϕ] = 0 , (23)

where Ψ = Ψ[ξ, ϕ] is the wave function of the universe. The minisuperspace
metric can be diagonalized using special coordinates [23].

It is usually assumed that on Planck scale processes with topology changes
should take place. For this reason Hawking and Page introduced the no-
tion of quantum wormholes as a quantum extension of the classical worm-
hole paradigma. They defined the quantum wormholes as solutions of the
Wheeler-DeWitt (WDW) equation with the following boundary conditions
[20]:

(i) the wave function is exponentially damped for large spatial geometry,
(ii) the wave function is regular when the spatial geometry degenerates.

In the case of our Wheeler-deWitt equation corresponding calculations have
been made in [4]. In 4-dimensional models with the scale factor having a
turning point (at the minimum) the production of the Lorentzian space-time
may be treated as a quantum tunneling process (”birth from nothing”). The
universe appears spontaneously going through the potential barrier with the
size equal to the size of the Lorentzian universe at the turning point. But in
multidimensional case the situation becomes more complicated. The factor
spaces Mi may reach their minimum points at different times. The “birth
from nothing” for each factor space takes place at a different value of time.
If the difference between these events is large enough the extra dimensions
may be unobservable because they are hidden from us by a potential barrier.

Further inside into the solutions to multifactor cosmological models can
be found using the conformal equivalence between different models [25]. For
Lagrangians L[R, ϕ] depending only on Ricci curvature R and a scalar field ϕ,
there exists an explicit description of conformal equivalence, with the minimal
coupling model and the conformal coupling model as particular representa-
tives of a conformal class [10]. The domains of equivalence are separated by
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certain critical values of the scalar field ϕ. Furthermore the coupling con-
stant ξ of the coupling between ϕ and R is critical at both, the minimal value
ξ = 0 and the conformal value ξc = D−2

4(D−1)
.

For vanishing potential of the minimally coupled scalar field one finds a
multidimensional generalization of Kasner’s solution. Its scale factor singu-
larity vanishes in the conformal coupling model. Static internal spaces in the
minimal model become time-dependent in the conformal one. The nonsin-
gular conformal solution has a particularly interesting region, where inter-
nal spaces shrink while the external space expands. While the Lorentzian
solution relates to a creation of the universe at finite scale, it’s Euclidean
counterpart is an (instanton) wormhole.
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