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ABSTRACT

We consider the elementary consequences of the distribution in redshift and column
density of narrow quasar absorption lines.

1. Introduction

The evolution of the expansion rate of the universe is subject to the Friedmann
equation,

1

R2
(
dR

dt
)2 = H2[z] = H2

0 (λ0 − κ0(1 + z)2 + Ω0(1 + z)3) = H2
0h

2[z] . (1)

The normalized cosmological constant λ, the normalized curvature κ, and the density
parameter Ω have to be determined from the evolution of the population of homoge-
neously distributed objects whose intrinsic evolution is known. The same observation
can be used to get the intrinsic evolution of these objects, if the cosmological model
is given. In the simplest case, the number of objects in a spherical shell between the
redshifts z and z + dz is given by

N [z]
dz

dχ
dχ = A[z]R3

04πr2[z]dχ, (2)

where the functions r[z] and χ[z] are defined as usual by the line element ds2 =
c2dt2 −R2[t](dχ2 + r2[χ](dθ2 + sin2 θdϕ2)) and the redshift relation

dχ =
RH

R0

dz

h[z]
.

The function A[z] describes the evolution of the comoving density of the population
in question. The evolution can be in number (by merging or fragmentation) or in the
property defining the membership to the population. Hence,

N [z]h[z] = A[z]4πr2[z]R2
0RH



describes the relation between the evolution of the expansion rate, h[z], and the
evolution of the population, A[z], if the number per redshift N [z] is given by obser-
vation. If we denote this property by the value L of some observable, we can define
a distribution

N [z, L]h[z]dL = A[z]R2
0RH4πr2[z]p[L, α[z]]dL.

Intrinsic evolution is now split into the evolution of the total number A[z] per comov-
ing volume and the evolution of the parameters α[z] of the distribution of L.

2. Quasar absorption lines

Quasar absorption lines indicate a homogeneous population of absorbers. The
number of lines per redshift interval is correspondingly given by

N [z]h[z] = A[z]RHQ[z]. (3)

The comoving surface 4πR2
0r

2[z] in equation (2) had only to be substituted by the
comoving cross-section Q[z] of the absorbers. For instance, the cross-section of a
cloud of physically constant size evolves like Q[z] = Q2

0(1 + z)2. The evolution of the
size is related to the evolution of the expansion rate, if N [z] is given by observation.

Quasar absorption lines are uncorrelated. This is a strange observation, because
one should expect to see the void structure of the galaxy distribution. If the line of
sight cuts a wall, the absorption lines are expected to be denser than in the redshift
interval corresponding to the voids itself. Such density variations are not seen at the
level of equivalent width EW > 0.1 Å. Our hypothesis is to identify the isolable lines
by the walls itself and the redshift distance between two lines with the voids. We
assume the walls to be densely populated by clouds and filaments of Ly-α absorbing
hydrogen, so that each wall-crossing of the line of sight produces one absorption line.
This hypothesis leads to a constant comoving A and Q, because the foam structure can
only expand with the universe. The walls are dense down to some critical redshift zcrit.
Below that redshift, the dilution reduces the probalility of a line from 1 to smaller
values. As long as the walls remain dense, the product AQ is constant, and the
observation of N [z] determines H[z] up to the factor H0. Because of the Friedmann
equation, eq.(1), the function h2[z] can show a decrease in z only if the normalized
curvature κ0 is positive. In fact, N [z] is increasing between the redshifts 2 and 4.
Counting identifiable lines, one gets an only slow increase of N [z], resulting in4,5

λ0 = 1.080, Ω0 = 0.014 , κ0 = λ0 + Ω0 − 1 .

The errors lie in the position of the minimum of the expansion rate h[z] (zmin ≈ 3.5,
h2

min ≈ 0.5) and trandform in only small errors of λ0 and Ω0.

How to compare this result with the hypothesis of a homogeneous distribution
of individual clouds? Individual clouds produce line densities depending on the evo-
lution of their size. The no-evolution approximation is Q[z] = Q0(1 + z)2, because



we have to assume the clouds to be confined and not expanding with the universe.
Observationally, we have to introduce a minimum intrinsic equivalent width EWmin

for counting lines. The observed width goes as EWobserved = EWintrinsic(1+z). To get
a constant intrinsic minimum over the total range of redshift z = 2 . . . 4 it is necessary
to choose EWmin ≈ 0.3 Å, i.e. we can count only the larger clouds. One gets6

N [z] ∝ (1 + z)γ, γ ≈ 2.5 .

With the void structure in mind, the larger clouds are comparatively rare positions
on the walls and do not allow to see the walls in total. The result with no evolution
is now h[z]N [z] ∝ (1 + z)2. Curiously enough, we get the same values2 of λ0 and Ω0

as in the case of the narrower lines and h[z]N [z] = const.

3. Column density evolution

The assumed minimum intrinsic equivalent width characterizes a constant-member
population of clouds only in the case of no evolution in column density of the ind-
vidual cloud. This is generally assumed to be the case9,8. However, if we find only
a power-law part of the distribution of column densities, we are not allowed to make
such a statement independent of a hypothesis of the number evolution. We will dis-
cuss this point later. For the moment, we include the possibility of an evolution of
the typical column density W [z], which is the product of the physical density of Ly-α
absorbing hydrogen in the absorbers, µA[z](1 + z)3, with the physical column length
S[z](1 + z)−1. The total absorbing mass per comoving volume is now given by

µtotal = µA[z]S[z]Q[z]A[z] .

Substituting equation (3) yields

N [z]h[z]W [z] = RHµtotal(1 + z)2 .

This equation relates the evolution of the expansion rate of the universe with the evo-
lution of the total mass of Ly-α absorbing hydrogen. The relation does not depend
on the behaviour of the individual cloud (expansion, contraction, merging, fragmen-
tation) or of the configuration of the absorbers (clouds, filaments, walls) and its
evolution. Using the data of Lu et al.6, i.e. N [z] ≈ N0(1 + z)2.5 and W [z] ≈ W0, we
obtain

h[z]N0W0 ≈ µtotal(1 + z)−0.5 .

Again, if µtotal evolves slowly, a universe with positive curvature is the consequence.
A universe with λ = κ = 0 results in µtotal ∝ (1 + z)2, which indicates a very short
lifetime for the Ly-α absorbing state of the hydrogen:

τLyα =
µtotal

dµtotal

dt

≈ 0.06H−1
0 .



Such a short lifetime is only produced by a model, in which the Lyman-alpha clouds
are more or less primordial condensations at z ≈ 10, which are merging to form
galaxies, so that the population observed in the redshift range of z = 2 . . . 4 is only
the remainder of a much richer population fading out by merging and star formation
fast7. However, one has now to argue for a secondary population of Ly-α absorbing
clouds, which are seen in the HST spectra of comparatively nearby quasars1. There
are too many lines in the spectra for a simple extrapolation from the redshift range
= 2 . . . 4 in the (λ = κ = 0) universe. in our hypothesis, the evolution of µtotal is
slow, and the lines seen in the HST spectra are more sparse than expected from the
extrapolation. This is due to the existence of a redshift zcrit, denoting the time when
the walls become transparent and the clouds and filaments cannot cover them totally
any more.

4. Conclusions

• If we can approximate a distribution between some limits as a power law, we
only know that the accessible region does not contain the essential part of the
distribution: any expectation value including the normalization depends on the
limits irreducibly. For instance, if the distribution of column densities is a power
law, the typical equivalent width is not defined. Instead, we may write

N [z, W ]dWdz = A[z](
W

W0[z]
)βdWdz .

The observations then tell us only the change of the quantity

A∗[z] =
A[z]

W β
0 [z]

.

The argument about dM/dt is weakened.

• Star formation and merging are considered already.

• Usually inflation is believed to predict vanishing curvature. Inflationary models
with curvature nevertheless can be constructed. Their main problem lies in the
inflation period being too short for cooling enough the perturbations in order
to suppose zero-point oscillations at the first crossing of the Hubble radius of
the larger scales. Nevertheless, curvature should not always set to zero before
evaluating the observations.

• A cosmological term and curvature, which matter in the recent epoch are both
very small at the end of inflation, and are named fine-tuned. If Λc2/3 is of the
order of H2

0 , the corresponding temperature is about 0.1...1 eV. This is the order
of magnitude of a so-called late-time phase transition10. Hence zero Λ would
be a fine-tuned cancellation of all contributions to the vacuum energy by the



weaker than GUT interactions, which are still stronger than any cosmological
term requires today. There is no argument against including Λ in the evaluation
of astrophysical observations.

• Conventional dark matter, inferred from rotation velocities and velocity disper-
sions is at best marginally consistent with the extremely low density of a closed
Friedmann-Lemâıtre universe with minimum expansion rate at z ≥ 3.

• Exotic dark matter is inconsistent with such a universe.

• If the interpetation of the bulk velocities discussed by A.Yahil (this volume) is
correct, the Friedmann-Lemâıtre universe is in serious trouble, if our position
in the universe is not peculiar by its depth of gravitational potential.

• The Hubble constant may be inferred from the analysis by identifying the den-
sity with the baryon density allowed by the primordial nucleosynthesis. One
gets a value of H0 ≈ 90 km/s/Mpc. Our argument favours the high value of
the Hubble constant.

• There is no age problem in a Friedmann-Lemâıtre universe with minimum ex-
pansion rate at z ≥ 3. The actual age of such a universe is at least 3 times the
Hubble age. This large correction for the age helpes also the post-recombination
growth of perturbations, but not too much3.
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